Cargando…
Assessing treatment switch among patients with multiple sclerosis: A machine learning approach
BACKGROUND: Patients with multiple sclerosis (MS) frequently switch their Disease-Modifying Agents (DMA) for effectiveness and safety concerns. This study aimed to develop and compare the random forest (RF) machine learning (ML) model with the logistic regression (LR) model for predicting DMA switch...
Autores principales: | Li, Jieni, Huang, Yinan, Hutton, George J., Aparasu, Rajender R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405092/ https://www.ncbi.nlm.nih.gov/pubmed/37554927 http://dx.doi.org/10.1016/j.rcsop.2023.100307 |
Ejemplares similares
-
Application of machine learning in predicting survival outcomes involving real-world data: a scoping review
por: Huang, Yinan, et al.
Publicado: (2023) -
Marginal Health Care Expenditure Burden Among U.S. Civilian Noninstitutionalized Individuals with Multiple Sclerosis: 2010-2015
por: Earla, Jagadeswara Rao, et al.
Publicado: (2020) -
Machine learning methods to predict 30-day hospital readmission outcome among US adults with pneumonia: analysis of the national readmission database
por: Huang, Yinan, et al.
Publicado: (2022) -
Application of machine learning in predicting hospital readmissions: a scoping review of the literature
por: Huang, Yinan, et al.
Publicado: (2021) -
Comparative Adherence Trajectories of Oral Fingolimod and Injectable Disease Modifying Agents in Multiple Sclerosis
por: Earla, Jagadeswara R, et al.
Publicado: (2020)