Cargando…

Tumor-derived covalent organic framework nanozymes for targeted chemo-photothermal combination therapy

Covalent organic frameworks (COFs) have garnered enormous attention in anti-cancer therapy recently. However, the intrinsic drawbacks such as poor biocompatibility and low target-specificity greatly restrain the full clinical implementation of COF. Herein, we report a biomimetic multifunctional COF...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Shengnan, Tian, Tian, Meng, Tao, Wu, Jin, Hu, Danyou, Liao, Qiaobo, Zhuang, Jialu, Wang, Hua, Zhang, Guiyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405260/
https://www.ncbi.nlm.nih.gov/pubmed/37554442
http://dx.doi.org/10.1016/j.isci.2023.107348
Descripción
Sumario:Covalent organic frameworks (COFs) have garnered enormous attention in anti-cancer therapy recently. However, the intrinsic drawbacks such as poor biocompatibility and low target-specificity greatly restrain the full clinical implementation of COF. Herein, we report a biomimetic multifunctional COF nanozyme, which consists of AIEgen-based COF (TPE-s COF) with encapsulated gold nanoparticles (Au NPs). The nanozyme was co-cultured with HepG2 cells until the cell membrane was fused with lipophilic TPE-s COF-Au@Cisplatin. By using the cryo-shocking method, we fabricated an inactivated form of the TPE-s COF-Au@Cisplatin nanozyme endocytosed in the HepG2 cell membrane (M@TPE-s COF-Au@Cisplatin), which lost their proliferative ability and pathogenicity. Upon laser irradiation, the M@TPE-s COF-Au@Cisplatin nanozymes cleaved, thereby releasing the TPE-s COF-Au nanozyme and Cisplatin to exert their photothermal and drug therapeutic effect. This work opens a new avenue to the synthesis of tumor-derived fluorescent TPE-s COF-Au nanozymes for highly efficient, synergetic, and targeted chemo-photothermal combination therapy of liver cancer.