Cargando…
Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
[Image: see text] Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405269/ https://www.ncbi.nlm.nih.gov/pubmed/37498189 http://dx.doi.org/10.1021/acs.jpclett.3c01005 |
Sumario: | [Image: see text] Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still, the structure–sensitivity relationships at the basis of such detection limits are little understood. In this work, we integrate NMR spectroscopy and atomistic molecular dynamics simulations to examine the covariates that affect the sensitivity of different NMR chemosensing experiments [saturation transfer difference (STD), water STD, and high-power water-mediated STD]. Our results show that the intensity of the observed signals correlates with the number and duration of the spin–spin interactions between the analytes and the nanoparticles and/or between the analytes and the nanoparticles’ solvation molecules. In turn, these parameters depend on the location and dynamics of each analyte inside the monolayer. This insight will eventually facilitate the tailoring of experimental and computational setups to the analyte’s chemistry, making NMR chemosensing an even more effective technique in practical use. |
---|