Cargando…

Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing

[Image: see text] Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still,...

Descripción completa

Detalles Bibliográficos
Autores principales: Franco-Ulloa, Sebastian, Cesari, Andrea, Riccardi, Laura, De Biasi, Federico, Rosa-Gastaldo, Daniele, Mancin, Fabrizio, De Vivo, Marco, Rastrelli, Federico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405269/
https://www.ncbi.nlm.nih.gov/pubmed/37498189
http://dx.doi.org/10.1021/acs.jpclett.3c01005
_version_ 1785085491227394048
author Franco-Ulloa, Sebastian
Cesari, Andrea
Riccardi, Laura
De Biasi, Federico
Rosa-Gastaldo, Daniele
Mancin, Fabrizio
De Vivo, Marco
Rastrelli, Federico
author_facet Franco-Ulloa, Sebastian
Cesari, Andrea
Riccardi, Laura
De Biasi, Federico
Rosa-Gastaldo, Daniele
Mancin, Fabrizio
De Vivo, Marco
Rastrelli, Federico
author_sort Franco-Ulloa, Sebastian
collection PubMed
description [Image: see text] Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still, the structure–sensitivity relationships at the basis of such detection limits are little understood. In this work, we integrate NMR spectroscopy and atomistic molecular dynamics simulations to examine the covariates that affect the sensitivity of different NMR chemosensing experiments [saturation transfer difference (STD), water STD, and high-power water-mediated STD]. Our results show that the intensity of the observed signals correlates with the number and duration of the spin–spin interactions between the analytes and the nanoparticles and/or between the analytes and the nanoparticles’ solvation molecules. In turn, these parameters depend on the location and dynamics of each analyte inside the monolayer. This insight will eventually facilitate the tailoring of experimental and computational setups to the analyte’s chemistry, making NMR chemosensing an even more effective technique in practical use.
format Online
Article
Text
id pubmed-10405269
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104052692023-08-08 Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing Franco-Ulloa, Sebastian Cesari, Andrea Riccardi, Laura De Biasi, Federico Rosa-Gastaldo, Daniele Mancin, Fabrizio De Vivo, Marco Rastrelli, Federico J Phys Chem Lett [Image: see text] Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still, the structure–sensitivity relationships at the basis of such detection limits are little understood. In this work, we integrate NMR spectroscopy and atomistic molecular dynamics simulations to examine the covariates that affect the sensitivity of different NMR chemosensing experiments [saturation transfer difference (STD), water STD, and high-power water-mediated STD]. Our results show that the intensity of the observed signals correlates with the number and duration of the spin–spin interactions between the analytes and the nanoparticles and/or between the analytes and the nanoparticles’ solvation molecules. In turn, these parameters depend on the location and dynamics of each analyte inside the monolayer. This insight will eventually facilitate the tailoring of experimental and computational setups to the analyte’s chemistry, making NMR chemosensing an even more effective technique in practical use. American Chemical Society 2023-07-27 /pmc/articles/PMC10405269/ /pubmed/37498189 http://dx.doi.org/10.1021/acs.jpclett.3c01005 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Franco-Ulloa, Sebastian
Cesari, Andrea
Riccardi, Laura
De Biasi, Federico
Rosa-Gastaldo, Daniele
Mancin, Fabrizio
De Vivo, Marco
Rastrelli, Federico
Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
title Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
title_full Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
title_fullStr Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
title_full_unstemmed Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
title_short Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
title_sort molecular mechanisms underlying detection sensitivity in nanoparticle-assisted nmr chemosensing
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405269/
https://www.ncbi.nlm.nih.gov/pubmed/37498189
http://dx.doi.org/10.1021/acs.jpclett.3c01005
work_keys_str_mv AT francoulloasebastian molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing
AT cesariandrea molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing
AT riccardilaura molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing
AT debiasifederico molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing
AT rosagastaldodaniele molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing
AT mancinfabrizio molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing
AT devivomarco molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing
AT rastrellifederico molecularmechanismsunderlyingdetectionsensitivityinnanoparticleassistednmrchemosensing