Cargando…
BST2 negatively regulates porcine reproductive and respiratory syndrome virus replication by restricting the expression of viral proteins
Porcine reproductive and respiratory syndrome virus (PRRSV) has seriously affected the viability of swine industries worldwide, and effective measures to control PRRSV are urgently required. Understanding the mechanisms of action of antiviral proteins is crucial for developing antiviral strategies....
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405318/ https://www.ncbi.nlm.nih.gov/pubmed/37495116 http://dx.doi.org/10.1016/j.virusres.2023.199181 |
Sumario: | Porcine reproductive and respiratory syndrome virus (PRRSV) has seriously affected the viability of swine industries worldwide, and effective measures to control PRRSV are urgently required. Understanding the mechanisms of action of antiviral proteins is crucial for developing antiviral strategies. Interferon-induced bone marrow stromal cell antigen 2 (BST2) can inhibit the replication of various viruses via different pathways. However, little is known about the effects of BST2 on PRRSV. Therefore, this study aimed to evaluate whether the interferon-induced BST2 can inhibit PRRSV replication. We used western blotting and RT-qPCR techniques to analyze the effect of BST2 overexpression and knockdown on PRRSV replication. Overexpression of BST2 inhibited the replication of PRRSV, whereas knockdown of BST2 by small interfering RNA promoted PRRSV replication. Additionally, the expression of BST2 was upregulated during the early phase of PRRSV infection in porcine alveolar macrophages. Analysis of PRRSV proteins showed that BST2 restricted the expression of several non-structural viral proteins. BST2 downregulated the expression of Nsp12 through a proteasome-dependent pathway and downregulated the expression and transcription of E protein. These findings demonstrate the potential of BST2 as a critical regulator of PRRSV replication. |
---|