Cargando…

Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach

Applying data-reduction techniques to extract meaningful information from electronic performance and tracking systems (EPTS) has become a hot topic in football training load (TL) monitoring. The aim of this study was to reduce the dimensionality of the internal and external load measures, by a princ...

Descripción completa

Detalles Bibliográficos
Autores principales: Teixeira, José Eduardo, Forte, Pedro, Ferraz, Ricardo, Branquinho, Luís, Morgans, Ryland, Silva, António José, Monteiro, António Miguel, Barbosa, Tiago M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405799/
https://www.ncbi.nlm.nih.gov/pubmed/37554335
http://dx.doi.org/10.7717/peerj.15806
Descripción
Sumario:Applying data-reduction techniques to extract meaningful information from electronic performance and tracking systems (EPTS) has become a hot topic in football training load (TL) monitoring. The aim of this study was to reduce the dimensionality of the internal and external load measures, by a principal component approach, to describe and explain the resultant equations for TL monitoring during a standard in-season microcycle in sub-elite youth football. Additionally, it is intended to identify the most representative measure for each principal component. A principal component analysis (PCA) was conducted with a Monte Carlo parallel analysis and VariMax rotation to extract baseline characteristics, external TL, heart rate (HR)-based measures and perceived exertion. Training data were collected from sixty sub-elite young football players during a 6-week training period using 18 Hz global positioning system (GPS) with inertial sensors, 1 Hz short-range telemetry system, total quality recovery (TQR) and rating of perceived exertion (RPE). Five principal components accounted for 68.7% of the total variance explained in the training data. Resultant equations from PCA was subdivided into: (1) explosiveness, accelerations and impacts (27.4%); (2) high-speed running (16.2%); (3) HR-based measures (10.0%); (4) baseline characteristics (8.3%); and (5) average running velocity (6.7%). Considering the highest factor in each principal component, decelerations (PCA 1), sprint distance (PCA 2), average HR (PCA 3), chronological age (PCA 4) and maximal speed (PCA 5) are the conditional dimension to be considered in TL monitoring during a standard microcycle in sub-elite youth football players. Current research provides the first composite equations to extract the most representative components during a standard in-season microcycle in sub-elite youth football players. Futures research should expand the resultant equations within training days, by considering other well-being measures, technical-tactical skills and match-related contextual factors.