Cargando…
Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach
Applying data-reduction techniques to extract meaningful information from electronic performance and tracking systems (EPTS) has become a hot topic in football training load (TL) monitoring. The aim of this study was to reduce the dimensionality of the internal and external load measures, by a princ...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405799/ https://www.ncbi.nlm.nih.gov/pubmed/37554335 http://dx.doi.org/10.7717/peerj.15806 |
_version_ | 1785085612191121408 |
---|---|
author | Teixeira, José Eduardo Forte, Pedro Ferraz, Ricardo Branquinho, Luís Morgans, Ryland Silva, António José Monteiro, António Miguel Barbosa, Tiago M. |
author_facet | Teixeira, José Eduardo Forte, Pedro Ferraz, Ricardo Branquinho, Luís Morgans, Ryland Silva, António José Monteiro, António Miguel Barbosa, Tiago M. |
author_sort | Teixeira, José Eduardo |
collection | PubMed |
description | Applying data-reduction techniques to extract meaningful information from electronic performance and tracking systems (EPTS) has become a hot topic in football training load (TL) monitoring. The aim of this study was to reduce the dimensionality of the internal and external load measures, by a principal component approach, to describe and explain the resultant equations for TL monitoring during a standard in-season microcycle in sub-elite youth football. Additionally, it is intended to identify the most representative measure for each principal component. A principal component analysis (PCA) was conducted with a Monte Carlo parallel analysis and VariMax rotation to extract baseline characteristics, external TL, heart rate (HR)-based measures and perceived exertion. Training data were collected from sixty sub-elite young football players during a 6-week training period using 18 Hz global positioning system (GPS) with inertial sensors, 1 Hz short-range telemetry system, total quality recovery (TQR) and rating of perceived exertion (RPE). Five principal components accounted for 68.7% of the total variance explained in the training data. Resultant equations from PCA was subdivided into: (1) explosiveness, accelerations and impacts (27.4%); (2) high-speed running (16.2%); (3) HR-based measures (10.0%); (4) baseline characteristics (8.3%); and (5) average running velocity (6.7%). Considering the highest factor in each principal component, decelerations (PCA 1), sprint distance (PCA 2), average HR (PCA 3), chronological age (PCA 4) and maximal speed (PCA 5) are the conditional dimension to be considered in TL monitoring during a standard microcycle in sub-elite youth football players. Current research provides the first composite equations to extract the most representative components during a standard in-season microcycle in sub-elite youth football players. Futures research should expand the resultant equations within training days, by considering other well-being measures, technical-tactical skills and match-related contextual factors. |
format | Online Article Text |
id | pubmed-10405799 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104057992023-08-08 Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach Teixeira, José Eduardo Forte, Pedro Ferraz, Ricardo Branquinho, Luís Morgans, Ryland Silva, António José Monteiro, António Miguel Barbosa, Tiago M. PeerJ Kinesiology Applying data-reduction techniques to extract meaningful information from electronic performance and tracking systems (EPTS) has become a hot topic in football training load (TL) monitoring. The aim of this study was to reduce the dimensionality of the internal and external load measures, by a principal component approach, to describe and explain the resultant equations for TL monitoring during a standard in-season microcycle in sub-elite youth football. Additionally, it is intended to identify the most representative measure for each principal component. A principal component analysis (PCA) was conducted with a Monte Carlo parallel analysis and VariMax rotation to extract baseline characteristics, external TL, heart rate (HR)-based measures and perceived exertion. Training data were collected from sixty sub-elite young football players during a 6-week training period using 18 Hz global positioning system (GPS) with inertial sensors, 1 Hz short-range telemetry system, total quality recovery (TQR) and rating of perceived exertion (RPE). Five principal components accounted for 68.7% of the total variance explained in the training data. Resultant equations from PCA was subdivided into: (1) explosiveness, accelerations and impacts (27.4%); (2) high-speed running (16.2%); (3) HR-based measures (10.0%); (4) baseline characteristics (8.3%); and (5) average running velocity (6.7%). Considering the highest factor in each principal component, decelerations (PCA 1), sprint distance (PCA 2), average HR (PCA 3), chronological age (PCA 4) and maximal speed (PCA 5) are the conditional dimension to be considered in TL monitoring during a standard microcycle in sub-elite youth football players. Current research provides the first composite equations to extract the most representative components during a standard in-season microcycle in sub-elite youth football players. Futures research should expand the resultant equations within training days, by considering other well-being measures, technical-tactical skills and match-related contextual factors. PeerJ Inc. 2023-08-04 /pmc/articles/PMC10405799/ /pubmed/37554335 http://dx.doi.org/10.7717/peerj.15806 Text en © 2023 Teixeira et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Kinesiology Teixeira, José Eduardo Forte, Pedro Ferraz, Ricardo Branquinho, Luís Morgans, Ryland Silva, António José Monteiro, António Miguel Barbosa, Tiago M. Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach |
title | Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach |
title_full | Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach |
title_fullStr | Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach |
title_full_unstemmed | Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach |
title_short | Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach |
title_sort | resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: a principal components approach |
topic | Kinesiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405799/ https://www.ncbi.nlm.nih.gov/pubmed/37554335 http://dx.doi.org/10.7717/peerj.15806 |
work_keys_str_mv | AT teixeirajoseeduardo resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach AT fortepedro resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach AT ferrazricardo resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach AT branquinholuis resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach AT morgansryland resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach AT silvaantoniojose resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach AT monteiroantoniomiguel resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach AT barbosatiagom resultantequationsfortrainingloadmonitoringduringastandardmicrocycleinsubeliteyouthfootballaprincipalcomponentsapproach |