Cargando…
Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network
Parkinson's disease (PD) is a common and complex neurodegenerative disorder with five stages on the Hoehn and Yahr scaling. Characterizing brain function alterations with progression of early stage disease would support accurate disease staging, development of new therapies, and objective monit...
Autores principales: | Guo, Xueqi, Tinaz, Sule, Dvornek, Nicha C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406199/ https://www.ncbi.nlm.nih.gov/pubmed/37555151 http://dx.doi.org/10.3389/fnimg.2022.952084 |
Ejemplares similares
-
Extracting default mode network based on graph neural network for resting state fMRI study
por: Wang, Donglin, et al.
Publicado: (2022) -
Resting-state fMRI can detect alterations in seizure onset and spread regions in patients with non-lesional epilepsy: a pilot study
por: Sathe, Anish V., et al.
Publicado: (2023) -
Efficient evaluation of the Open QC task fMRI dataset
por: Etzel, Joset A.
Publicado: (2023) -
Regression models for partially localized fMRI connectivity analyses
por: Smith, Bonnie B., et al.
Publicado: (2023) -
Reproducing FSL's fMRI data analysis via Nipype: Relevance, challenges, and solutions
por: Chen, Yibei, et al.
Publicado: (2022)