Cargando…
Influence of contrast and texture based image modifications on the performance and attention shift of U-Net models for brain tissue segmentation
Contrast and texture modifications applied during training or test-time have recently shown promising results to enhance the generalization performance of deep learning segmentation methods in medical image analysis. However, a deeper understanding of this phenomenon has not been investigated. In th...
Autores principales: | You, Suhang, Reyes, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406260/ https://www.ncbi.nlm.nih.gov/pubmed/37555149 http://dx.doi.org/10.3389/fnimg.2022.1012639 |
Ejemplares similares
-
Improving across-dataset brain tissue segmentation for MRI imaging using transformer
por: Rao, Vishwanatha M., et al.
Publicado: (2022) -
Alzheimer's disease: 3-Dimensional MRI texture for prediction of conversion from mild cognitive impairment
por: Luk, Collin C., et al.
Publicado: (2018) -
DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography
por: Theaud, Guillaume, et al.
Publicado: (2022) -
Using transfer learning for automated microbleed segmentation
por: Dadar, Mahsa, et al.
Publicado: (2022) -
Manual lesion segmentations for traumatic brain injury characterization
por: Bennett, Alexis, et al.
Publicado: (2023)