Cargando…
Deep learning in neuroimaging data analysis: Applications, challenges, and solutions
Methods for the analysis of neuroimaging data have advanced significantly since the beginning of neuroscience as a scientific discipline. Today, sophisticated statistical procedures allow us to examine complex multivariate patterns, however most of them are still constrained by assuming inherent lin...
Autores principales: | Avberšek, Lev Kiar, Repovš, Grega |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406264/ https://www.ncbi.nlm.nih.gov/pubmed/37555142 http://dx.doi.org/10.3389/fnimg.2022.981642 |
Ejemplares similares
-
autohrf-an R package for generating data-informed event models for general linear modeling of task-based fMRI data
por: Purg, Nina, et al.
Publicado: (2022) -
Corrigendum: autohrf-an R package for generating data-informed event models for general linear modeling of task-based fMRI data
por: Purg, Nina, et al.
Publicado: (2023) -
Editorial: Deep learning in neuroimaging-based neurological disease analysis
por: Li, Xiaoxiao, et al.
Publicado: (2023) -
Evaluation and comparison of most prevalent artifact reduction methods for EEG acquired simultaneously with fMRI
por: Kraljič, Aleksij, et al.
Publicado: (2022) -
Reproducing FSL's fMRI data analysis via Nipype: Relevance, challenges, and solutions
por: Chen, Yibei, et al.
Publicado: (2022)