Cargando…
Improving across-dataset brain tissue segmentation for MRI imaging using transformer
Brain tissue segmentation has demonstrated great utility in quantifying MRI data by serving as a precursor to further post-processing analysis. However, manual segmentation is highly labor-intensive, and automated approaches, including convolutional neural networks (CNNs), have struggled to generali...
Autores principales: | Rao, Vishwanatha M., Wan, Zihan, Arabshahi, Soroush, Ma, David J., Lee, Pin-Yu, Tian, Ye, Zhang, Xuzhe, Laine, Andrew F., Guo, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406272/ https://www.ncbi.nlm.nih.gov/pubmed/37555170 http://dx.doi.org/10.3389/fnimg.2022.1023481 |
Ejemplares similares
-
Efficient evaluation of the Open QC task fMRI dataset
por: Etzel, Joset A.
Publicado: (2023) -
DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography
por: Theaud, Guillaume, et al.
Publicado: (2022) -
Influence of contrast and texture based image modifications on the performance and attention shift of U-Net models for brain tissue segmentation
por: You, Suhang, et al.
Publicado: (2022) -
Quantitative evaluation of the influence of multiple MRI sequences and of pathological tissues on the registration of longitudinal data acquired during brain tumor treatment
por: Canalini, Luca, et al.
Publicado: (2022) -
Using transfer learning for automated microbleed segmentation
por: Dadar, Mahsa, et al.
Publicado: (2022)