Cargando…
AI-driven and automated MRI sequence optimization in scanner-independent MRI sequences formulated by a domain-specific language
INTRODUCTION: The complexity of Magnetic Resonance Imaging (MRI) sequences requires expert knowledge about the underlying contrast mechanisms to select from the wide range of available applications and protocols. Automation of this process using machine learning (ML) can support the radiologists and...
Autores principales: | Hoinkiss, Daniel Christopher, Huber, Jörn, Plump, Christina, Lüth, Christoph, Drechsler, Rolf, Günther, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406289/ https://www.ncbi.nlm.nih.gov/pubmed/37554629 http://dx.doi.org/10.3389/fnimg.2023.1090054 |
Ejemplares similares
-
Utility of Double Inversion Recovery Sequences in MRI
por: Ryan, Maura E.
Publicado: (2016) -
Automated seizure onset zone locator from resting-state functional MRI in drug-resistant epilepsy
por: Banerjee, Ayan, et al.
Publicado: (2023) -
Quantitative evaluation of the influence of multiple MRI sequences and of pathological tissues on the registration of longitudinal data acquired during brain tumor treatment
por: Canalini, Luca, et al.
Publicado: (2022) -
Wilson's disease: MRI features
por: Singh, Paramdeep, et al.
Publicado: (2011) -
Key considerations for child and adolescent MRI data collection
por: Davis, Brittany R., et al.
Publicado: (2022)