Cargando…
A Riemannian Revisiting of Structure–Function Mapping Based on Eigenmodes
Understanding the link between brain structure and function may not only improve our knowledge of brain organization, but also lead to better quantification of pathology. To quantify this link, recent studies have attempted to predict the brain's functional connectivity from its structural conn...
Autores principales: | Deslauriers-Gauthier, Samuel, Zucchelli, Mauro, Laghrissi, Hiba, Deriche, Rachid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406294/ https://www.ncbi.nlm.nih.gov/pubmed/37555180 http://dx.doi.org/10.3389/fnimg.2022.850266 |
Ejemplares similares
-
An Anisotropic 4D Filtering Approach to Recover Brain Activation From Paradigm-Free Functional MRI Data
por: Costantini, Isa, et al.
Publicado: (2022) -
DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography
por: Theaud, Guillaume, et al.
Publicado: (2022) -
Network alignment and similarity reveal atlas-based topological differences in structural connectomes
por: Frigo, Matteo, et al.
Publicado: (2021) -
A functional MRI pre-processing and quality control protocol based on statistical parametric mapping (SPM) and MATLAB
por: Di, Xin, et al.
Publicado: (2023) -
Structural Brain Imaging Predicts Individual-Level Task Activation Maps Using Deep Learning
por: Ellis, David G., et al.
Publicado: (2022)