Cargando…
Golden ratio and self-similarity in swimming: breast-stroke and the back-stroke
INTRODUCTION: Dynamics-on-graph concepts and generalized finite-length Fibonacci sequences have been used to characterize, from a temporal point of view, both human walking & running at a comfortable speed and front-crawl & butterfly swimming strokes at a middle/long distance pace. Such sequ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406382/ https://www.ncbi.nlm.nih.gov/pubmed/37554410 http://dx.doi.org/10.3389/fnhum.2023.1176866 |
Sumario: | INTRODUCTION: Dynamics-on-graph concepts and generalized finite-length Fibonacci sequences have been used to characterize, from a temporal point of view, both human walking & running at a comfortable speed and front-crawl & butterfly swimming strokes at a middle/long distance pace. Such sequences, in which the golden ratio plays a crucial role to describe self-similar patterns, have been found to be subtly experimentally exhibited by healthy (but not pathological) walking subjects and elite swimmers, in terms of durations of gait/stroke-subphases with a clear physical meaning. Corresponding quantitative indices have been able to unveil the resulting hidden time-harmonic and self-similar structures. RESULTS: In this study, we meaningfully extend such latest findings to the remaining two swimming strokes, namely, the breast-stroke and the back-stroke: breast-stroke, just like butterfly swimming, is highly technical and involves the complex coordination of the arm and leg actions, while back-stroke is definitely similar to front-crawl swimming. An experimental validation with reference to international-level swimmers is included. |
---|