Cargando…
DeepSAT: Learning Molecular Structures from Nuclear Magnetic Resonance Data
The identification of molecular structure is essential for understanding chemical diversity and for developing drug leads from small molecules. Nevertheless, the structure elucidation of small molecules by Nuclear Magnetic Resonance (NMR) experiments is often a long and non-trivial process that reli...
Autores principales: | Kim, Hyun Woo, Zhang, Chen, Reher, Raphael, Wang, Mingxun, Alexander, Kelsey L., Nothias, Louis-Félix, Han, Yoo Kyong, Shin, Hyeji, Lee, Ki Yong, Lee, Kyu Hyeong, Kim, Myeong Ji, Dorrestein, Pieter C., Gerwick, William H., Cottrell, Garrison W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406729/ https://www.ncbi.nlm.nih.gov/pubmed/37550756 http://dx.doi.org/10.1186/s13321-023-00738-4 |
Ejemplares similares
-
NPClassifier: A Deep Neural Network-Based Structural
Classification Tool for Natural Products
por: Kim, Hyun Woo, et al.
Publicado: (2021) -
Significance estimation for large scale metabolomics annotations by spectral matching
por: Scheubert, Kerstin, et al.
Publicado: (2017) -
A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria
por: Leão, Tiago, et al.
Publicado: (2021) -
Sampling and sensitivity analyses tools (SaSAT) for computational modelling
por: Hoare, Alexander, et al.
Publicado: (2008) -
MfSAT: Detect simple sequence repeats in viral genomes
por: Chen, Ming, et al.
Publicado: (2011)