Cargando…
Global Radiomic Features from Mammography for Predicting Difficult-To-Interpret Normal Cases
This work aimed to investigate whether global radiomic features (GRFs) from mammograms can predict difficult-to-interpret normal cases (NCs). Assessments from 537 readers interpreting 239 normal mammograms were used to categorise cases as 120 difficult-to-interpret and 119 easy-to-interpret based on...
Autores principales: | Siviengphanom, Somphone, Gandomkar, Ziba, Lewis, Sarah J., Brennan, Patrick C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406750/ https://www.ncbi.nlm.nih.gov/pubmed/37253894 http://dx.doi.org/10.1007/s10278-023-00836-7 |
Ejemplares similares
-
Reliability of radiologists’ first impression when interpreting a screening mammogram
por: Gandomkar, Ziba, et al.
Publicado: (2023) -
Global processing provides malignancy evidence complementary to the information captured by humans or machines following detailed mammogram inspection
por: Gandomkar, Ziba, et al.
Publicado: (2021) -
Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study
por: Tao, Xuetong, et al.
Publicado: (2023) -
Artificial Intelligence in medical imaging practice: looking to the future
por: Lewis, Sarah J, et al.
Publicado: (2019) -
Determining Image Processing Features Describing the Appearance of Challenging Mitotic Figures and Miscounted Nonmitotic Objects
por: Gandomkar, Ziba, et al.
Publicado: (2017)