Cargando…
An Image Turing Test on Realistic Gastroscopy Images Generated by Using the Progressive Growing of Generative Adversarial Networks
Generative adversarial networks (GAN) in medicine are valuable techniques for augmenting unbalanced rare data, anomaly detection, and avoiding patient privacy issues. However, there were limits to generating high-quality endoscopic images with various characteristics, such as peristalsis, viewpoints...
Autores principales: | Shin, Keewon, Lee, Jung Su, Lee, Ji Young, Lee, Hyunsu, Kim, Jeongseok, Byeon, Jeong-Sik, Jung, Hwoon-Yong, Kim, Do Hoon, Kim, Namkug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406771/ https://www.ncbi.nlm.nih.gov/pubmed/36914855 http://dx.doi.org/10.1007/s10278-023-00803-2 |
Ejemplares similares
-
Realistic High-Resolution Body Computed Tomography Image Synthesis by Using Progressive Growing Generative Adversarial Network: Visual Turing Test
por: Park, Ho Young, et al.
Publicado: (2021) -
Image Turing test and its applications on synthetic chest radiographs by using the progressive growing generative adversarial network
por: Jang, Miso, et al.
Publicado: (2023) -
Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
por: Kim, Mingyu, et al.
Publicado: (2021) -
Author Correction: Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
por: Kim, Mingyu, et al.
Publicado: (2021) -
Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test
por: Hong, Ki-Taek, et al.
Publicado: (2022)