Cargando…
A novel image augmentation based on statistical shape and intensity models: application to the segmentation of hip bones from CT images
BACKGROUND: The collection and annotation of medical images are hindered by data scarcity, privacy, and ethical reasons or limited resources, negatively affecting deep learning approaches. Data augmentation is often used to mitigate this problem, by generating synthetic images from training sets to...
Autores principales: | Schmid, Jérôme, Assassi, Lazhari, Chênes, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406777/ https://www.ncbi.nlm.nih.gov/pubmed/37550543 http://dx.doi.org/10.1186/s41747-023-00357-6 |
Ejemplares similares
-
A new 2D‐3D registration gold‐standard dataset for the hip joint based on uncertainty modeling
por: D'Isidoro, Fabio, et al.
Publicado: (2021) -
Unified wavelet and gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images
por: Vasilache, Simina, et al.
Publicado: (2009) -
Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM)
por: Wang, Xuehu, et al.
Publicado: (2017) -
An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction
por: Li, Jiaojiao, et al.
Publicado: (2015) -
Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures
por: Nakao, Megumi, et al.
Publicado: (2016)