Cargando…
SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics
Recent advancements in spatial transcriptomic technologies have enabled the measurement of whole transcriptome profiles with preserved spatial context. However, limited by spatial resolution, the measured expressions at each spot are often from a mixture of multiple cells. Computational deconvolutio...
Autores principales: | Liu, Zhiyuan, Wu, Dafei, Zhai, Weiwei, Ma, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406862/ https://www.ncbi.nlm.nih.gov/pubmed/37550279 http://dx.doi.org/10.1038/s41467-023-40458-9 |
Ejemplares similares
-
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data
por: Danaher, Patrick, et al.
Publicado: (2022) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
por: Zhang, Yingkun, et al.
Publicado: (2022) -
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
por: Long, Yahui, et al.
Publicado: (2023)