Cargando…
Discovering conservation laws using optimal transport and manifold learning
Conservation laws are key theoretical and practical tools for understanding, characterizing, and modeling nonlinear dynamical systems. However, for many complex systems, the corresponding conserved quantities are difficult to identify, making it hard to analyze their dynamics and build stable predic...
Autores principales: | Lu, Peter Y., Dangovski, Rumen, Soljačić, Marin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406953/ https://www.ncbi.nlm.nih.gov/pubmed/37550312 http://dx.doi.org/10.1038/s41467-023-40325-7 |
Ejemplares similares
-
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
por: Loh, Charlotte, et al.
Publicado: (2022) -
GEODESIC SINKHORN FOR FAST AND ACCURATE OPTIMAL TRANSPORT ON MANIFOLDS
por: Huguet, Guillaume, et al.
Publicado: (2023) -
Discovering cell types using manifold learning and enhanced visualization of single-cell RNA-Seq data
por: Vasighizaker, Akram, et al.
Publicado: (2022) -
Discovering the Mathematical Laws of Nature
Publicado: (2009) -
Discover entropy and the second law of thermodynamics: a playful way of discovering a law of nature
por: Ben-Naim, Arieh
Publicado: (2010)