Cargando…
Evaluating the effectiveness of machine learning techniques in forecasting the severity of traffic accidents
Traffic accidents pose a significant public safety concern, leading to numerous injuries and fatalities worldwide. Predicting the severity of these accidents is crucial for developing effective road safety measures and reducing casualties. This paper proposes an analytic framework that utilizes mach...
Autores principales: | Obasi, Izuchukwu Chukwuma, Benson, Chizubem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407198/ https://www.ncbi.nlm.nih.gov/pubmed/37560691 http://dx.doi.org/10.1016/j.heliyon.2023.e18812 |
Ejemplares similares
-
LLM Multimodal Traffic Accident Forecasting
por: de Zarzà, I., et al.
Publicado: (2023) -
Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents
por: Barba, Lida, et al.
Publicado: (2014) -
Five-Year Forecasting Deaths Caused by Traffic Accidents in Fars Province of Iran
por: Yadollahi, Mahnaz, et al.
Publicado: (2019) -
Insights into Factors Affecting Traffic Accident Severity of Novice and Experienced Drivers: A Machine Learning Approach
por: Chen, Shuaiming, et al.
Publicado: (2021) -
A Time Series Model for Assessing the Trend and Forecasting the Road Traffic Accident Mortality
por: Yousefzadeh-Chabok, Shahrokh, et al.
Publicado: (2016)