Cargando…

Insight into the effect of chemical structure for microbial lignite methanation

The chemical structure of lignite plays a fundamental role in microbial degradation, which can be altered to increase gas production. In this study, the structural changes in lignite were analyzed by conducting pretreatment and biomethane gas production experiments using crushing and ball milling pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Lin, Zhang, Yongfeng, Hao, Zhifei, Zhang, Junying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407216/
https://www.ncbi.nlm.nih.gov/pubmed/37560665
http://dx.doi.org/10.1016/j.heliyon.2023.e18352
Descripción
Sumario:The chemical structure of lignite plays a fundamental role in microbial degradation, which can be altered to increase gas production. In this study, the structural changes in lignite were analyzed by conducting pretreatment and biomethane gas production experiments using crushing and ball milling processes, respectively. The results revealed that different particle size ranges of lignite considerably influence gas production. The maximum methane yield under both treatments corresponded to a particle size range of 400–500 mesh. The gas production after ball milling was higher than that after crushing, irrespective of particle size. Compared with lignite subjected to crushing, that subjected to ball milling exhibited more oxygen-containing functional groups, less coalification, more disordered structures, and small aromatic ring structures, demonstrating more unstable properties, which are typically favorable to microbial flora for the utilization and degradation of lignite. Additionally, a symbiotic microbial community comprising multiple species was established during the microbial degradation of lignite into biogas. This study provides new insights and a strong scientific foundation for further research on microbial lignite methanation.