Cargando…
IMFSegNet: Cost-effective and objective quantification of intramuscular fat in histological sections by deep learning
The assessment of muscle condition is of great importance in various research areas. In particular, evaluating the degree of intramuscular fat (IMF) in tissue sections is a challenging task, which today is still mostly performed qualitatively or quantitatively by a highly subjective and error-prone...
Autores principales: | Praetorius, Jan-Philipp, Walluks, Kassandra, Svensson, Carl-Magnus, Arnold, Dirk, Figge, Marc Thilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407270/ https://www.ncbi.nlm.nih.gov/pubmed/37560127 http://dx.doi.org/10.1016/j.csbj.2023.07.031 |
Ejemplares similares
-
Automated quantification of the phagocytosis of Aspergillus fumigatus conidia by a novel image analysis algorithm
por: Kraibooj, Kaswara, et al.
Publicado: (2015) -
Quantification of arthritic bone degradation by analysis of 3D micro-computed tomography data
por: Svensson, Carl-Magnus, et al.
Publicado: (2017) -
Automated Classification of Circulating Tumor Cells and the Impact of Interobsever Variability on Classifier Training and Performance
por: Svensson, Carl-Magnus, et al.
Publicado: (2015) -
Automated Quantification of Early Bone Alterations and Pathological Bone Turnover in Experimental Arthritis by in vivo PET/CT Imaging
por: Hoffmann, Bianca, et al.
Publicado: (2017) -
Quantitative analysis of peroxisome tracks using a Hidden Markov Model
por: Svensson, Carl-Magnus, et al.
Publicado: (2023)