Cargando…
Missing value imputation in a data matrix using the regularised singular value decomposition
Some statistical analysis techniques may require complete data matrices, but a frequent problem in the construction of databases is the incomplete collection of information for different reasons. One option to tackle the problem is to estimate and impute the missing data. This paper describes a form...
Autores principales: | Arciniegas-Alarcón, Sergio, García-Peña, Marisol, Krzanowski, Wojtek J., Rengifo, Camilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407287/ https://www.ncbi.nlm.nih.gov/pubmed/37560402 http://dx.doi.org/10.1016/j.mex.2023.102289 |
Ejemplares similares
-
Missing value imputation using least squares techniques in contaminated matrices
por: Garcia-Peña, Marisol, et al.
Publicado: (2022) -
SMSSVD: SubMatrix Selection Singular Value Decomposition
por: Henningsson, Rasmus, et al.
Publicado: (2019) -
Unfolding with Singular Value Decomposition
por: Kartvelishvili, V
Publicado: (2011) -
Large-scale genomic prediction using singular value decomposition of the genotype matrix
por: Ødegård, Jørgen, et al.
Publicado: (2018) -
Missing value imputation for epistatic MAPs
por: Ryan, Colm, et al.
Publicado: (2010)