Cargando…

Restoring the imaging quality of circular transducer array-based PACT using synthetic aperture focusing technique integrated with 2nd-derivative-based back projection scheme

Circular-array-based photoacoustic computed tomography (CA-PACT) is a promising imaging tool owing to its broad acoustic detection coverage and fidelity. However, CA-PACT suffers from poor image quality outside the focal zone along both elevational and lateral dimensions. To address this challenge,...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Rongkang, Chen, Tao, Ren, Yaguang, Liu, Liangjian, Chen, Ningbo, Wong, Kenneth K.Y., Song, Liang, Ma, Xiaohui, Liu, Chengbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407438/
https://www.ncbi.nlm.nih.gov/pubmed/37559663
http://dx.doi.org/10.1016/j.pacs.2023.100537
Descripción
Sumario:Circular-array-based photoacoustic computed tomography (CA-PACT) is a promising imaging tool owing to its broad acoustic detection coverage and fidelity. However, CA-PACT suffers from poor image quality outside the focal zone along both elevational and lateral dimensions. To address this challenge, we proposed a novel reconstruction strategy by integrating the synthetic aperture focusing technique (SAFT) with the 2nd derivative-based back projection (2nd D-BP) algorithm to restore the image quality outside the focal zone along both the elevational and lateral axes. The proposed solution is a two-phase reconstruction scheme. In the first phase, with the assistance of an acoustic lens, we designed a circular array-based SAFT algorithm to restore the resolution and SNR along the elevational axis. The acoustic lens pushes the boundary of the upper limit of the SAFT scheme to achieve enhanced elevational resolution. In the second phase, we proposed a 2nd D-BP scheme to improve the lateral resolution and suppress noises in 3D imaging results. The 2nd D-BP strategy enhances the image quality along the lateral dimension by up-converting the high spatial frequencies of the object’s absorption pattern. We validated the effectiveness of the proposed strategy using both phantoms and in vivo human experiments. The experimental results demonstrated superior image quality (7-fold enhancement in elevational resolution, 3-fold enhancement in lateral resolution, and an 11-dB increase in SNR). This strategy provides a new paradigm in the PACT system as it significantly enhances the spatial resolution and imaging contrast in both the elevational and lateral dimensions while maintaining a large focal zone.