Cargando…
Value of radiomics in differentiating synchronous double primary lung adenocarcinomas from intrapulmonary metastasis
BACKGROUND: Distinguishing synchronous double primary lung adenocarcinoma (SDPLA) from intrapulmonary metastasis (IPM) of lung cancer has significant therapeutic and prognostic values. This study aimed to develop and validate a CT-based radiomics model to differentiate SDPLA from IPM. METHODS: A tot...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407476/ https://www.ncbi.nlm.nih.gov/pubmed/37559630 http://dx.doi.org/10.21037/jtd-23-133 |
Sumario: | BACKGROUND: Distinguishing synchronous double primary lung adenocarcinoma (SDPLA) from intrapulmonary metastasis (IPM) of lung cancer has significant therapeutic and prognostic values. This study aimed to develop and validate a CT-based radiomics model to differentiate SDPLA from IPM. METHODS: A total of 153 patients (93 SDPLA and 60 IPM) with 306 pathologically confirmed lesions were retrospectively studied. CT morphological features were also recorded. Region of interest (ROI) segmentation was performed semiautomatically, and 1,037 radiomics features were extracted from every segmented lesion The differences of radiomics features were defined as the relative net difference in radiomics features between the two lesions on CT. Those low reliable (ICC <0.75) and redundant (r>0.9) features were excluded by intraclass correlation coefficients (ICC) and Pearson’s correlation. Multivariate logistic regression (LR) algorithm was used to establish the classification model according to the selected features. The radiomics model was based on the four most contributing differences of radiomics features. Clinical-CT model and MixModel were based on selected clinical and CT features only and the combination of clinical-CT and Rad-score, respectively. RESULTS: In both the training and testing cohorts, the area under the curves (AUCs) of the radiomics model were larger than those of the clinical-CT model (0.944 vs. 0.793 and 0.886 vs. 0.735 on training and testing cohorts, respectively), and statistically significant differences between the two models in the testing set were found (P<0.001). Meanwhile, three radiologists had sensitivities of 84.2%, 63.9%, and 68.4%, and specificities of 76.9%, 69.2%, and 76.9% in differentiating 19 SDPLA cases from 13 cases of IPM in the testing set. Compared with the performance of the three radiologists, the radiomics model showed better accuracy to the patients in both the training and testing cohorts. Among the three models, the radiomics model showed the best net benefits. CONCLUSIONS: The differences of radiomics features showed excellent diagnostic performance for preoperative differentiation between synchronous double primary lung adenocarcinoma from interpulmonary metastasis, superior to the clinical model and decisions made by radiologists. |
---|