Cargando…
Machine learning-based identification of lower grade glioma stemness subtypes discriminates patient prognosis and drug response
Glioma stem cells (GSCs) remodel their tumor microenvironment to sustain a supportive niche. Identification and stratification of stemness related characteristics in patients with glioma might aid in the diagnosis and treatment of the disease. In this study, we calculated the mRNA stemness index in...
Autores principales: | Zhou, Hongshu, Chen, Bo, Zhang, Liyang, Li, Chuntao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407594/ https://www.ncbi.nlm.nih.gov/pubmed/37560125 http://dx.doi.org/10.1016/j.csbj.2023.07.029 |
Ejemplares similares
-
The Role of m5C-Related lncRNAs in Predicting Overall Prognosis and Regulating the Lower Grade Glioma Microenvironment
por: Zhou, Hongshu, et al.
Publicado: (2022) -
Glioma stem cell signature predicts the prognosis and the response to tumor treating fields treatment
por: Chen, Bo, et al.
Publicado: (2022) -
Identification of molecular subtypes based on inflammatory response in lower-grade glioma
por: Lin, Wanzun, et al.
Publicado: (2022) -
Machine learning identification of cuproptosis and necroptosis-associated molecular subtypes to aid in prognosis assessment and immunotherapy response prediction in low-grade glioma
por: Miao, Ye, et al.
Publicado: (2022) -
Molecular Subtypes of Glioblastoma Are Relevant to Lower Grade Glioma
por: Guan, Xiaowei, et al.
Publicado: (2014)