Cargando…

Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis

[Image: see text] Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yu, Mascaretti, Luca, Melchionna, Michele, Henrotte, Olivier, Kment, Štepan, Fornasiero, Paolo, Naldoni, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407842/
https://www.ncbi.nlm.nih.gov/pubmed/37560189
http://dx.doi.org/10.1021/acscatal.3c01837
_version_ 1785086052241768448
author Zhang, Yu
Mascaretti, Luca
Melchionna, Michele
Henrotte, Olivier
Kment, Štepan
Fornasiero, Paolo
Naldoni, Alberto
author_facet Zhang, Yu
Mascaretti, Luca
Melchionna, Michele
Henrotte, Olivier
Kment, Štepan
Fornasiero, Paolo
Naldoni, Alberto
author_sort Zhang, Yu
collection PubMed
description [Image: see text] Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H(2)O(2) selectivity of 90%, and achieve a H(2)O(2) productivity of 207 mmol g(TiN)(–1) h(–1) at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiO(x)N(y) surface content promoted a higher H(2)O(2) selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.
format Online
Article
Text
id pubmed-10407842
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104078422023-08-09 Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis Zhang, Yu Mascaretti, Luca Melchionna, Michele Henrotte, Olivier Kment, Štepan Fornasiero, Paolo Naldoni, Alberto ACS Catal [Image: see text] Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H(2)O(2) selectivity of 90%, and achieve a H(2)O(2) productivity of 207 mmol g(TiN)(–1) h(–1) at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiO(x)N(y) surface content promoted a higher H(2)O(2) selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties. American Chemical Society 2023-07-20 /pmc/articles/PMC10407842/ /pubmed/37560189 http://dx.doi.org/10.1021/acscatal.3c01837 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Zhang, Yu
Mascaretti, Luca
Melchionna, Michele
Henrotte, Olivier
Kment, Štepan
Fornasiero, Paolo
Naldoni, Alberto
Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis
title Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis
title_full Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis
title_fullStr Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis
title_full_unstemmed Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis
title_short Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H(2)O(2) Electrosynthesis
title_sort thermoplasmonic in situ fabrication of nanohybrid electrocatalysts over gas diffusion electrodes for enhanced h(2)o(2) electrosynthesis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407842/
https://www.ncbi.nlm.nih.gov/pubmed/37560189
http://dx.doi.org/10.1021/acscatal.3c01837
work_keys_str_mv AT zhangyu thermoplasmonicinsitufabricationofnanohybridelectrocatalystsovergasdiffusionelectrodesforenhancedh2o2electrosynthesis
AT mascarettiluca thermoplasmonicinsitufabricationofnanohybridelectrocatalystsovergasdiffusionelectrodesforenhancedh2o2electrosynthesis
AT melchionnamichele thermoplasmonicinsitufabricationofnanohybridelectrocatalystsovergasdiffusionelectrodesforenhancedh2o2electrosynthesis
AT henrotteolivier thermoplasmonicinsitufabricationofnanohybridelectrocatalystsovergasdiffusionelectrodesforenhancedh2o2electrosynthesis
AT kmentstepan thermoplasmonicinsitufabricationofnanohybridelectrocatalystsovergasdiffusionelectrodesforenhancedh2o2electrosynthesis
AT fornasieropaolo thermoplasmonicinsitufabricationofnanohybridelectrocatalystsovergasdiffusionelectrodesforenhancedh2o2electrosynthesis
AT naldonialberto thermoplasmonicinsitufabricationofnanohybridelectrocatalystsovergasdiffusionelectrodesforenhancedh2o2electrosynthesis