Cargando…

Macroevolutionary constraints on global microbial diversity

Biologists have long sought to quantify the number of species on Earth. Often missing from these efforts is the contribution of microorganisms, the smallest but most abundant form of life on the planet. Despite recent large‐scale sampling efforts, estimates of global microbial diversity span many or...

Descripción completa

Detalles Bibliográficos
Autores principales: Fishman, Ford J., Lennon, Jay T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408003/
https://www.ncbi.nlm.nih.gov/pubmed/37560179
http://dx.doi.org/10.1002/ece3.10403
Descripción
Sumario:Biologists have long sought to quantify the number of species on Earth. Often missing from these efforts is the contribution of microorganisms, the smallest but most abundant form of life on the planet. Despite recent large‐scale sampling efforts, estimates of global microbial diversity span many orders of magnitude. It is important to consider how speciation and extinction over the last 4 billion years constrain inventories of biodiversity. We parameterized macroevolutionary models based on birth–death processes that assume constant and universal speciation and extinction rates. The models reveal that richness beyond 10(12) species is feasible and in agreement with empirical predictions. Additional simulations suggest that mass extinction events do not place hard limits on modern‐day microbial diversity. Together, our study provides independent support for a massive global‐scale microbiome while shedding light on the upper limits of life on Earth.