Cargando…
Identification of a novel bile marker clusterin and a public online prediction platform based on deep learning for cholangiocarcinoma
BACKGROUND: Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor, and its diagnosis is still a challenge. This study aimed to identify a novel bile marker for CCA diagnosis based on proteomics and establish a diagnostic model with deep learning. METHODS: A total of 644 subjects (236 CCA a...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408060/ https://www.ncbi.nlm.nih.gov/pubmed/37553571 http://dx.doi.org/10.1186/s12916-023-02990-9 |
Sumario: | BACKGROUND: Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor, and its diagnosis is still a challenge. This study aimed to identify a novel bile marker for CCA diagnosis based on proteomics and establish a diagnostic model with deep learning. METHODS: A total of 644 subjects (236 CCA and 408 non-CCA) from two independent centers were divided into discovery, cross-validation, and external validation sets for the study. Candidate bile markers were identified by three proteomics data and validated on 635 clinical humoral specimens and 121 tissue specimens. A diagnostic multi-analyte model containing bile and serum biomarkers was established in cross-validation set by deep learning and validated in an independent external cohort. RESULTS: The results of proteomics analysis and clinical specimen verification showed that bile clusterin (CLU) was significantly higher in CCA body fluids. Based on 376 subjects in the cross-validation set, ROC analysis indicated that bile CLU had a satisfactory diagnostic power (AUC: 0.852, sensitivity: 73.6%, specificity: 90.1%). Building on bile CLU and 63 serum markers, deep learning established a diagnostic model incorporating seven factors (CLU, CA19-9, IBIL, GGT, LDL-C, TG, and TBA), which showed a high diagnostic utility (AUC: 0.947, sensitivity: 90.3%, specificity: 84.9%). External validation in an independent cohort (n = 259) resulted in a similar accuracy for the detection of CCA. Finally, for the convenience of operation, a user-friendly prediction platform was built online for CCA. CONCLUSIONS: This is the largest and most comprehensive study combining bile and serum biomarkers to differentiate CCA. This diagnostic model may potentially be used to detect CCA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-023-02990-9. |
---|