Cargando…

Properties of white matter tract diffusivity in children with developmental dyslexia and comorbid attention deficit/hyperactivity disorder

BACKGROUND: Developmental dyslexia (DD) and attention deficit/hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders. Individuals with DD or ADHD have both been shown to have deficits in white matter tracts associated with reading and attentional control networks. However, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Slaby, Ryan J., Arrington, C. Nikki, Malins, Jeffrey, Sevcik, Rose A., Pugh, Kenneth R., Morris, Robin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408076/
https://www.ncbi.nlm.nih.gov/pubmed/37550628
http://dx.doi.org/10.1186/s11689-023-09495-9
Descripción
Sumario:BACKGROUND: Developmental dyslexia (DD) and attention deficit/hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders. Individuals with DD or ADHD have both been shown to have deficits in white matter tracts associated with reading and attentional control networks. However, white matter diffusivity in individuals comorbid with both DD and ADHD (DD + ADHD) has not been specifically explored. METHODS: Participants were 3(rd) and 4(th) graders (age range = 7 to 11 years; SD = 0.69) from three diagnostic groups ((DD (n = 40), DD + ADHD (n = 22), and typical developing (TD) (n = 20)). Behavioral measures of reading and attention alongside measures of white matter diffusivity were collected for all participants. RESULTS: DD + ADHD and TD groups differed in mean fractional anisotropy (FA) for the left and right Superior Longitudinal Fasciculus (SLF)-Parietal Terminations and SLF-Temporal Terminations. Mean FA for the DD group across these SLF tracts fell between the lower DD + ADHD and higher TD averages. No differences in mean diffusivity nor significant brain-behavior relations were found. CONCLUSIONS: Findings suggest that WM diffusivity in the SLF increases along a continuum across DD + ADHD, DD, and TD.