Cargando…
Cross-protein transfer learning substantially improves disease variant prediction
BACKGROUND: Genetic variation in the human genome is a major determinant of individual disease risk, but the vast majority of missense variants have unknown etiological effects. Here, we present a robust learning framework for leveraging saturation mutagenesis experiments to construct accurate compu...
Autores principales: | Jagota, Milind, Ye, Chengzhong, Albors, Carlos, Rastogi, Ruchir, Koehl, Antoine, Ioannidis, Nilah, Song, Yun S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408151/ https://www.ncbi.nlm.nih.gov/pubmed/37550700 http://dx.doi.org/10.1186/s13059-023-03024-6 |
Ejemplares similares
-
Transferability of Geometric Patterns from Protein Self-Interactions to Protein-Ligand Interactions
por: Koehl, Antoine, et al.
Publicado: (2022) -
GPN-MSA: an alignment-based DNA language model for genome-wide variant effect prediction
por: Benegas, Gonzalo, et al.
Publicado: (2023) -
The Impact of Stability Considerations on Genetic Fine-Mapping
por: Aw, Alan, et al.
Publicado: (2023) -
GUANinE v0.9: Benchmark Datasets for Genomic AI Sequence-to-Function Models
por: robson, eyes s., et al.
Publicado: (2023) -
X-CAP improves pathogenicity prediction of stopgain variants
por: Rastogi, Ruchir, et al.
Publicado: (2022)