Cargando…

A novel radiographic analysis system for subaxial cervical spine pedicle screw placement

BACKGROUND: Precise pedicle screw placement of the subaxial cervical spine is difficult. Not every hospital is equipped with a guidance system that can provide effective help. Computed tomography (CT) scanning is almost a routine preoperative examination for cervical spine surgery in all hospitals....

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Baozhi, Zhou, Tangjun, Ma, Hui, Zhao, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408217/
https://www.ncbi.nlm.nih.gov/pubmed/37553693
http://dx.doi.org/10.1186/s13018-023-03999-9
Descripción
Sumario:BACKGROUND: Precise pedicle screw placement of the subaxial cervical spine is difficult. Not every hospital is equipped with a guidance system that can provide effective help. Computed tomography (CT) scanning is almost a routine preoperative examination for cervical spine surgery in all hospitals. Appropriate measurement and analysis of the CT images could assist optimal cervical pedicle screw placement. The purpose of this study is to propose a new and universal method using computed tomography (CT) morphological parameters analysis to assist optimal cervical pedicle screw placement from C3 to C7. METHODS: A localization system with six parameters was designed based on preoperative CT reconstruction to guide subaxial cervical spine pedicle screw placement. The six parameters were distance from the starting point to the midline [D1], distance from the starting point to the lower edge of the inferior articular process [D2], transverse section angle [TSA], sagittal section angle [SSA], pedicle width [PW], and pedicle height [PH]. The six parameters were analyzed in 53 participants. RESULTS: Combining D1 and D2 could localize the entrance of the pedicle screw, and we concluded that D1 and TSA and D2 and SSA could be a new standard for determination of the transverse and sagittal orientation of the pedicle screw. The six parameters were closely related to the patient’s gender, height, and weight. PH and PW were linearly correlated and could guide selection of the appropriate pedicle screw. SSA was an independent parameter of the relevant vertebral body, and changes in SSA had nothing to do with the curvature or posture of the cervical spine. CONCLUSIONS: Understanding and applying the six-parameter localization system are essential for achieving accurate and optimal pedicle screw placement in subaxial cervical spine, regardless of cervical sagittal alignment.