Cargando…
Development and Validation of a Machine Learning Model for Detection and Classification of Tertiary Lymphoid Structures in Gastrointestinal Cancers
IMPORTANCE: Tertiary lymphoid structures (TLSs) are associated with a favorable prognosis and improved response to cancer immunotherapy. The current approach for evaluation of TLSs is limited by interobserver variability and high complexity and cost of specialized imaging techniques. OBJECTIVE: To d...
Autores principales: | Li, Zhe, Jiang, Yuming, Li, Bailiang, Han, Zhen, Shen, Jeanne, Xia, Yong, Li, Ruijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408275/ https://www.ncbi.nlm.nih.gov/pubmed/36692877 http://dx.doi.org/10.1001/jamanetworkopen.2022.52553 |
Ejemplares similares
-
Decentralized Learning Framework of Meta-Survival Analysis for Developing Robust Prognostic Signatures
por: Cui, Yi, et al.
Publicado: (2017) -
Single-Cell Spatial Analysis of Tumor and Immune Microenvironment on Whole-Slide Image Reveals Hepatocellular Carcinoma Subtypes
por: Wang, Haiyue, et al.
Publicado: (2020) -
Noninvasive Prediction of Occult Peritoneal Metastasis in Gastric Cancer Using Deep Learning
por: Jiang, Yuming, et al.
Publicado: (2021) -
The prognostic value of the tertiary lymphoid structure in gastrointestinal cancers
por: Yu, Aoyang, et al.
Publicado: (2023) -
Machine learning in radiation oncology: theory and applications
por: El Naqa, Issam, et al.
Publicado: (2015)