Cargando…
Machine learning algorithms for predicting outcomes of traumatic brain injury: A systematic review and meta-analysis
BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. The use of machine learning (ML) has emerged as a key advancement in TBI management. This study aimed to identify ML models with demonstrated effectiveness in predicting TBI outcomes. METHODS: We conducted...
Autores principales: | Courville, Evan, Kazim, Syed Faraz, Vellek, John, Tarawneh, Omar, Stack, Julia, Roster, Katie, Roy, Joanna, Schmidt, Meic, Bowers, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Scientific Scholar
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408617/ https://www.ncbi.nlm.nih.gov/pubmed/37560584 http://dx.doi.org/10.25259/SNI_312_2023 |
Ejemplares similares
-
Multinodular and Vacuolating Neuronal Tumor: Incidental Diagnosis of a Rare Brain Lesion
por: Arbuiso, Sophia, et al.
Publicado: (2021) -
Impact of COVID-19 on Spinal Diagnosis and Procedural Volume in the United States
por: Tarawneh, Omar H., et al.
Publicado: (2023) -
Prospective application of the risk analysis index to measure preoperative frailty in spinal tumor surgery: A single center outcomes analysis
por: Link, Remy L., et al.
Publicado: (2023) -
Endoscopic and Nonendoscopic Approaches to Single-Level Lumbar Spine Decompression: Propensity Score-Matched Comparative Analysis and Frailty-Driven Predictive Model
por: Kassicieh, Alexander J., et al.
Publicado: (2023) -
A Perennial Threat: A Case Series of Tree-Related Neurotrauma
por: Reiber, Cody, et al.
Publicado: (2021)