Cargando…
Deep learning for EEG-based prognostication after cardiac arrest: from current research to future clinical applications
Outcome prognostication in comatose patients after cardiac arrest (CA) remains to date a challenge. The major determinant of clinical outcome is the post-hypoxic/ischemic encephalopathy. Electroencephalography (EEG) is routinely used to assess neural functions in comatose patients. Currently, EEG-ba...
Autores principales: | Zubler, Frederic, Tzovara, Athina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408678/ https://www.ncbi.nlm.nih.gov/pubmed/37560450 http://dx.doi.org/10.3389/fneur.2023.1183810 |
Ejemplares similares
-
Auditory stimulation and deep learning predict awakening from coma after cardiac arrest
por: Aellen, Florence M, et al.
Publicado: (2023) -
The effect of sedation and time after cardiac arrest on coma outcome prognostication based on EEG power spectra
por: Pelentritou, Andria, et al.
Publicado: (2023) -
Diagnostic and prognostic EEG analysis of critically ill patients: A deep learning study
por: Jonas, Stefan, et al.
Publicado: (2022) -
Deep Learning With EEG Spectrograms in Rapid Eye Movement Behavior Disorder
por: Ruffini, Giulio, et al.
Publicado: (2019) -
Deep Learning-Based Localization of EEG Electrodes Within MRI Acquisitions
por: Pinte, Caroline, et al.
Publicado: (2021)