Cargando…

Dynamics of neocortical networks: connectivity beyond the canonical microcircuit

The neocortical network consists of two types of excitatory neurons and a variety of GABAergic inhibitory interneurons, which are organized in distinct microcircuits providing feedforward, feedback, lateral inhibition, and disinhibition. This network is activated by layer- and cell-type specific inp...

Descripción completa

Detalles Bibliográficos
Autor principal: Luhmann, Heiko J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409710/
https://www.ncbi.nlm.nih.gov/pubmed/37336815
http://dx.doi.org/10.1007/s00424-023-02830-y
Descripción
Sumario:The neocortical network consists of two types of excitatory neurons and a variety of GABAergic inhibitory interneurons, which are organized in distinct microcircuits providing feedforward, feedback, lateral inhibition, and disinhibition. This network is activated by layer- and cell-type specific inputs from first and higher order thalamic nuclei, other subcortical regions, and by cortico-cortical projections. Parallel and serial information processing occurs simultaneously in different intracortical subnetworks and is influenced by neuromodulatory inputs arising from the basal forebrain (cholinergic), raphe nuclei (serotonergic), locus coeruleus (noradrenergic), and ventral tegmentum (dopaminergic). Neocortical neurons differ in their intrinsic firing pattern, in their local and global synaptic connectivity, and in the dynamics of their synaptic interactions. During repetitive stimulation, synaptic connections between distinct neuronal cell types show short-term facilitation or depression, thereby activating or inactivating intracortical microcircuits. Specific networks are capable to generate local and global activity patterns (e.g., synchronized oscillations), which contribute to higher cognitive function and behavior. This review article aims to give a brief overview on our current understanding of the structure and function of the neocortical network.