Cargando…
Explainable machine learning framework to predict personalized physiological aging
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full compl...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410015/ https://www.ncbi.nlm.nih.gov/pubmed/37300327 http://dx.doi.org/10.1111/acel.13872 |
_version_ | 1785086365579345920 |
---|---|
author | Bernard, David Doumard, Emmanuel Ader, Isabelle Kemoun, Philippe Pagès, Jean‐Christophe Galinier, Anne Cussat‐Blanc, Sylvain Furger, Felix Ferrucci, Luigi Aligon, Julien Delpierre, Cyrille Pénicaud, Luc Monsarrat, Paul Casteilla, Louis |
author_facet | Bernard, David Doumard, Emmanuel Ader, Isabelle Kemoun, Philippe Pagès, Jean‐Christophe Galinier, Anne Cussat‐Blanc, Sylvain Furger, Felix Ferrucci, Luigi Aligon, Julien Delpierre, Cyrille Pénicaud, Luc Monsarrat, Paul Casteilla, Louis |
author_sort | Bernard, David |
collection | PubMed |
description | Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter‐parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty‐six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age‐specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow‐up. These data show that PPA is a robust, quantitative and explainable ML‐based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation. |
format | Online Article Text |
id | pubmed-10410015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104100152023-08-10 Explainable machine learning framework to predict personalized physiological aging Bernard, David Doumard, Emmanuel Ader, Isabelle Kemoun, Philippe Pagès, Jean‐Christophe Galinier, Anne Cussat‐Blanc, Sylvain Furger, Felix Ferrucci, Luigi Aligon, Julien Delpierre, Cyrille Pénicaud, Luc Monsarrat, Paul Casteilla, Louis Aging Cell Research Articles Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter‐parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty‐six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age‐specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow‐up. These data show that PPA is a robust, quantitative and explainable ML‐based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation. John Wiley and Sons Inc. 2023-06-10 /pmc/articles/PMC10410015/ /pubmed/37300327 http://dx.doi.org/10.1111/acel.13872 Text en © 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Bernard, David Doumard, Emmanuel Ader, Isabelle Kemoun, Philippe Pagès, Jean‐Christophe Galinier, Anne Cussat‐Blanc, Sylvain Furger, Felix Ferrucci, Luigi Aligon, Julien Delpierre, Cyrille Pénicaud, Luc Monsarrat, Paul Casteilla, Louis Explainable machine learning framework to predict personalized physiological aging |
title | Explainable machine learning framework to predict personalized physiological aging |
title_full | Explainable machine learning framework to predict personalized physiological aging |
title_fullStr | Explainable machine learning framework to predict personalized physiological aging |
title_full_unstemmed | Explainable machine learning framework to predict personalized physiological aging |
title_short | Explainable machine learning framework to predict personalized physiological aging |
title_sort | explainable machine learning framework to predict personalized physiological aging |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410015/ https://www.ncbi.nlm.nih.gov/pubmed/37300327 http://dx.doi.org/10.1111/acel.13872 |
work_keys_str_mv | AT bernarddavid explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT doumardemmanuel explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT aderisabelle explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT kemounphilippe explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT pagesjeanchristophe explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT galinieranne explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT cussatblancsylvain explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT furgerfelix explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT ferrucciluigi explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT aligonjulien explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT delpierrecyrille explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT penicaudluc explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT monsarratpaul explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging AT casteillalouis explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging |