Cargando…

Explainable machine learning framework to predict personalized physiological aging

Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full compl...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernard, David, Doumard, Emmanuel, Ader, Isabelle, Kemoun, Philippe, Pagès, Jean‐Christophe, Galinier, Anne, Cussat‐Blanc, Sylvain, Furger, Felix, Ferrucci, Luigi, Aligon, Julien, Delpierre, Cyrille, Pénicaud, Luc, Monsarrat, Paul, Casteilla, Louis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410015/
https://www.ncbi.nlm.nih.gov/pubmed/37300327
http://dx.doi.org/10.1111/acel.13872
_version_ 1785086365579345920
author Bernard, David
Doumard, Emmanuel
Ader, Isabelle
Kemoun, Philippe
Pagès, Jean‐Christophe
Galinier, Anne
Cussat‐Blanc, Sylvain
Furger, Felix
Ferrucci, Luigi
Aligon, Julien
Delpierre, Cyrille
Pénicaud, Luc
Monsarrat, Paul
Casteilla, Louis
author_facet Bernard, David
Doumard, Emmanuel
Ader, Isabelle
Kemoun, Philippe
Pagès, Jean‐Christophe
Galinier, Anne
Cussat‐Blanc, Sylvain
Furger, Felix
Ferrucci, Luigi
Aligon, Julien
Delpierre, Cyrille
Pénicaud, Luc
Monsarrat, Paul
Casteilla, Louis
author_sort Bernard, David
collection PubMed
description Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter‐parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty‐six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age‐specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow‐up. These data show that PPA is a robust, quantitative and explainable ML‐based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
format Online
Article
Text
id pubmed-10410015
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-104100152023-08-10 Explainable machine learning framework to predict personalized physiological aging Bernard, David Doumard, Emmanuel Ader, Isabelle Kemoun, Philippe Pagès, Jean‐Christophe Galinier, Anne Cussat‐Blanc, Sylvain Furger, Felix Ferrucci, Luigi Aligon, Julien Delpierre, Cyrille Pénicaud, Luc Monsarrat, Paul Casteilla, Louis Aging Cell Research Articles Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter‐parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty‐six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age‐specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow‐up. These data show that PPA is a robust, quantitative and explainable ML‐based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation. John Wiley and Sons Inc. 2023-06-10 /pmc/articles/PMC10410015/ /pubmed/37300327 http://dx.doi.org/10.1111/acel.13872 Text en © 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Bernard, David
Doumard, Emmanuel
Ader, Isabelle
Kemoun, Philippe
Pagès, Jean‐Christophe
Galinier, Anne
Cussat‐Blanc, Sylvain
Furger, Felix
Ferrucci, Luigi
Aligon, Julien
Delpierre, Cyrille
Pénicaud, Luc
Monsarrat, Paul
Casteilla, Louis
Explainable machine learning framework to predict personalized physiological aging
title Explainable machine learning framework to predict personalized physiological aging
title_full Explainable machine learning framework to predict personalized physiological aging
title_fullStr Explainable machine learning framework to predict personalized physiological aging
title_full_unstemmed Explainable machine learning framework to predict personalized physiological aging
title_short Explainable machine learning framework to predict personalized physiological aging
title_sort explainable machine learning framework to predict personalized physiological aging
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410015/
https://www.ncbi.nlm.nih.gov/pubmed/37300327
http://dx.doi.org/10.1111/acel.13872
work_keys_str_mv AT bernarddavid explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT doumardemmanuel explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT aderisabelle explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT kemounphilippe explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT pagesjeanchristophe explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT galinieranne explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT cussatblancsylvain explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT furgerfelix explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT ferrucciluigi explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT aligonjulien explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT delpierrecyrille explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT penicaudluc explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT monsarratpaul explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging
AT casteillalouis explainablemachinelearningframeworktopredictpersonalizedphysiologicalaging