Cargando…
Explainable machine learning framework to predict personalized physiological aging
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full compl...
Autores principales: | Bernard, David, Doumard, Emmanuel, Ader, Isabelle, Kemoun, Philippe, Pagès, Jean‐Christophe, Galinier, Anne, Cussat‐Blanc, Sylvain, Furger, Felix, Ferrucci, Luigi, Aligon, Julien, Delpierre, Cyrille, Pénicaud, Luc, Monsarrat, Paul, Casteilla, Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410015/ https://www.ncbi.nlm.nih.gov/pubmed/37300327 http://dx.doi.org/10.1111/acel.13872 |
Ejemplares similares
-
Systemic Periodontal Risk Score Using an Innovative Machine Learning Strategy: An Observational Study
por: Monsarrat, Paul, et al.
Publicado: (2022) -
Doctors in Medical Data Sciences: A New Curriculum
por: Cussat-Blanc, Sylvain, et al.
Publicado: (2022) -
Broad-Spectrum Antibacterial Effects of Human Adipose-Derived Stromal Cells
por: Monsarrat, Paul, et al.
Publicado: (2019) -
Lactate fluxes mediated by the monocarboxylate transporter-1 are key determinants of the metabolic activity of beige adipocytes
por: Lagarde, Damien, et al.
Publicado: (2020) -
Periodontal Tissue Regeneration Using Syngeneic Adipose‐Derived Stromal Cells in a Mouse Model
por: Lemaitre, Mathieu, et al.
Publicado: (2016)