Cargando…
Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler
In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410207/ https://www.ncbi.nlm.nih.gov/pubmed/37564064 http://dx.doi.org/10.1098/rsos.230275 |
_version_ | 1785086405662212096 |
---|---|
author | Cheng, Chen Wen, Linjie Li, Jinglai |
author_facet | Cheng, Chen Wen, Linjie Li, Jinglai |
author_sort | Cheng, Chen |
collection | PubMed |
description | In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical problems, only data at the aggregate level is available and as a result the likelihood function is not available, which poses a challenge for Bayesian methods. In particular, we consider the situation where the distributions of the particles are observed. We propose a Wasserstein distance (WD)-based sequential Monte Carlo sampler to solve the problem: the WD is used to measure the similarity between the observed and the simulated particle distributions and the sequential Monte Carlo samplers is used to deal with the sequentially available observations. Two real-world examples are provided to demonstrate the performance of the proposed method. |
format | Online Article Text |
id | pubmed-10410207 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-104102072023-08-10 Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler Cheng, Chen Wen, Linjie Li, Jinglai R Soc Open Sci Mathematics In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical problems, only data at the aggregate level is available and as a result the likelihood function is not available, which poses a challenge for Bayesian methods. In particular, we consider the situation where the distributions of the particles are observed. We propose a Wasserstein distance (WD)-based sequential Monte Carlo sampler to solve the problem: the WD is used to measure the similarity between the observed and the simulated particle distributions and the sequential Monte Carlo samplers is used to deal with the sequentially available observations. Two real-world examples are provided to demonstrate the performance of the proposed method. The Royal Society 2023-08-09 /pmc/articles/PMC10410207/ /pubmed/37564064 http://dx.doi.org/10.1098/rsos.230275 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Mathematics Cheng, Chen Wen, Linjie Li, Jinglai Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler |
title | Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler |
title_full | Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler |
title_fullStr | Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler |
title_full_unstemmed | Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler |
title_short | Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler |
title_sort | parameter estimation from aggregate observations: a wasserstein distance-based sequential monte carlo sampler |
topic | Mathematics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410207/ https://www.ncbi.nlm.nih.gov/pubmed/37564064 http://dx.doi.org/10.1098/rsos.230275 |
work_keys_str_mv | AT chengchen parameterestimationfromaggregateobservationsawassersteindistancebasedsequentialmontecarlosampler AT wenlinjie parameterestimationfromaggregateobservationsawassersteindistancebasedsequentialmontecarlosampler AT lijinglai parameterestimationfromaggregateobservationsawassersteindistancebasedsequentialmontecarlosampler |