Cargando…
Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler
In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical pr...
Autores principales: | Cheng, Chen, Wen, Linjie, Li, Jinglai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410207/ https://www.ncbi.nlm.nih.gov/pubmed/37564064 http://dx.doi.org/10.1098/rsos.230275 |
Ejemplares similares
-
An introduction to sequential Monte Carlo
por: Chopin, Nicolas, et al.
Publicado: (2020) -
Sequential Monte Carlo methods in practice
por: Jordan, Michael, et al.
Publicado: (2001) -
Sequential Monte Carlo Methods in Practice
por: De Freitas, Nando, et al.
Publicado: (2001) -
Performance of Hamiltonian Monte Carlo and No-U-Turn Sampler for estimating genetic parameters and breeding values
por: Nishio, Motohide, et al.
Publicado: (2019) -
Monte Carlo samplers for efficient network inference
por: Kilic, Zeliha, et al.
Publicado: (2023)