Cargando…

Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia

To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Heng, Dai, Yu-Cheng, Wu, Fang, Liu, Xiao-Yong, Maurice, Sundy, Krutovsky, Konstantin V, Pavlov, Igor N, Lindner, Daniel L, Martin, Francis M, Yuan, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410303/
https://www.ncbi.nlm.nih.gov/pubmed/37498334
http://dx.doi.org/10.1093/gbe/evad136
_version_ 1785086425872465920
author Zhao, Heng
Dai, Yu-Cheng
Wu, Fang
Liu, Xiao-Yong
Maurice, Sundy
Krutovsky, Konstantin V
Pavlov, Igor N
Lindner, Daniel L
Martin, Francis M
Yuan, Yuan
author_facet Zhao, Heng
Dai, Yu-Cheng
Wu, Fang
Liu, Xiao-Yong
Maurice, Sundy
Krutovsky, Konstantin V
Pavlov, Igor N
Lindner, Daniel L
Martin, Francis M
Yuan, Yuan
author_sort Zhao, Heng
collection PubMed
description To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total. Compared with those of parasitic and saprophytic members, EcM species have significantly reduced number of plant cell wall degrading enzyme genes, and expanded transposable elements, genome sizes, small secreted proteins, and secreted proteases. EcM species still retain some of secreted carbohydrate-active enzymes (CAZymes) and have lost the key secreted CAZymes to degrade lignin and cellulose, while possess a strong capacity to degrade a microbial cell wall containing chitin and peptidoglycan. There were no significant differences in secreted CAZymes between fungi growing on gymnosperms and angiosperms, suggesting that the secreted CAZymes in the Hymenochaetales evolved before differentiation of host trees into gymnosperms and angiosperms. Nevertheless, parasitic and saprophytic species of the Hymenochaetales are very similar in many genome features, which reflect their close phylogenetic relationships both being white rot fungi. Phylogenomic and molecular clock analyses showed that the EcM genus Coltricia formed a clade located at the base of the Hymenochaetaceae and divergence time later than saprophytic species. And Coltricia remains one to two genes of AA2 family. These indicate that the ancestors of Coltricia appear to have originated from saprophytic ancestor with the ability to cause a white rot. This study provides new genomic data for EcM species and insights into the ecological diversification within the Hymenochaetales based on comparative genomics and phylogenomics analyses.
format Online
Article
Text
id pubmed-10410303
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-104103032023-08-10 Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia Zhao, Heng Dai, Yu-Cheng Wu, Fang Liu, Xiao-Yong Maurice, Sundy Krutovsky, Konstantin V Pavlov, Igor N Lindner, Daniel L Martin, Francis M Yuan, Yuan Genome Biol Evol Article To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total. Compared with those of parasitic and saprophytic members, EcM species have significantly reduced number of plant cell wall degrading enzyme genes, and expanded transposable elements, genome sizes, small secreted proteins, and secreted proteases. EcM species still retain some of secreted carbohydrate-active enzymes (CAZymes) and have lost the key secreted CAZymes to degrade lignin and cellulose, while possess a strong capacity to degrade a microbial cell wall containing chitin and peptidoglycan. There were no significant differences in secreted CAZymes between fungi growing on gymnosperms and angiosperms, suggesting that the secreted CAZymes in the Hymenochaetales evolved before differentiation of host trees into gymnosperms and angiosperms. Nevertheless, parasitic and saprophytic species of the Hymenochaetales are very similar in many genome features, which reflect their close phylogenetic relationships both being white rot fungi. Phylogenomic and molecular clock analyses showed that the EcM genus Coltricia formed a clade located at the base of the Hymenochaetaceae and divergence time later than saprophytic species. And Coltricia remains one to two genes of AA2 family. These indicate that the ancestors of Coltricia appear to have originated from saprophytic ancestor with the ability to cause a white rot. This study provides new genomic data for EcM species and insights into the ecological diversification within the Hymenochaetales based on comparative genomics and phylogenomics analyses. Oxford University Press 2023-07-27 /pmc/articles/PMC10410303/ /pubmed/37498334 http://dx.doi.org/10.1093/gbe/evad136 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Zhao, Heng
Dai, Yu-Cheng
Wu, Fang
Liu, Xiao-Yong
Maurice, Sundy
Krutovsky, Konstantin V
Pavlov, Igor N
Lindner, Daniel L
Martin, Francis M
Yuan, Yuan
Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
title Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
title_full Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
title_fullStr Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
title_full_unstemmed Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
title_short Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
title_sort insights into the ecological diversification of the hymenochaetales based on comparative genomics and phylogenomics with an emphasis on coltricia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410303/
https://www.ncbi.nlm.nih.gov/pubmed/37498334
http://dx.doi.org/10.1093/gbe/evad136
work_keys_str_mv AT zhaoheng insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT daiyucheng insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT wufang insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT liuxiaoyong insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT mauricesundy insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT krutovskykonstantinv insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT pavlovigorn insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT lindnerdaniell insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT martinfrancism insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia
AT yuanyuan insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia