Cargando…
Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410303/ https://www.ncbi.nlm.nih.gov/pubmed/37498334 http://dx.doi.org/10.1093/gbe/evad136 |
_version_ | 1785086425872465920 |
---|---|
author | Zhao, Heng Dai, Yu-Cheng Wu, Fang Liu, Xiao-Yong Maurice, Sundy Krutovsky, Konstantin V Pavlov, Igor N Lindner, Daniel L Martin, Francis M Yuan, Yuan |
author_facet | Zhao, Heng Dai, Yu-Cheng Wu, Fang Liu, Xiao-Yong Maurice, Sundy Krutovsky, Konstantin V Pavlov, Igor N Lindner, Daniel L Martin, Francis M Yuan, Yuan |
author_sort | Zhao, Heng |
collection | PubMed |
description | To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total. Compared with those of parasitic and saprophytic members, EcM species have significantly reduced number of plant cell wall degrading enzyme genes, and expanded transposable elements, genome sizes, small secreted proteins, and secreted proteases. EcM species still retain some of secreted carbohydrate-active enzymes (CAZymes) and have lost the key secreted CAZymes to degrade lignin and cellulose, while possess a strong capacity to degrade a microbial cell wall containing chitin and peptidoglycan. There were no significant differences in secreted CAZymes between fungi growing on gymnosperms and angiosperms, suggesting that the secreted CAZymes in the Hymenochaetales evolved before differentiation of host trees into gymnosperms and angiosperms. Nevertheless, parasitic and saprophytic species of the Hymenochaetales are very similar in many genome features, which reflect their close phylogenetic relationships both being white rot fungi. Phylogenomic and molecular clock analyses showed that the EcM genus Coltricia formed a clade located at the base of the Hymenochaetaceae and divergence time later than saprophytic species. And Coltricia remains one to two genes of AA2 family. These indicate that the ancestors of Coltricia appear to have originated from saprophytic ancestor with the ability to cause a white rot. This study provides new genomic data for EcM species and insights into the ecological diversification within the Hymenochaetales based on comparative genomics and phylogenomics analyses. |
format | Online Article Text |
id | pubmed-10410303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104103032023-08-10 Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia Zhao, Heng Dai, Yu-Cheng Wu, Fang Liu, Xiao-Yong Maurice, Sundy Krutovsky, Konstantin V Pavlov, Igor N Lindner, Daniel L Martin, Francis M Yuan, Yuan Genome Biol Evol Article To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total. Compared with those of parasitic and saprophytic members, EcM species have significantly reduced number of plant cell wall degrading enzyme genes, and expanded transposable elements, genome sizes, small secreted proteins, and secreted proteases. EcM species still retain some of secreted carbohydrate-active enzymes (CAZymes) and have lost the key secreted CAZymes to degrade lignin and cellulose, while possess a strong capacity to degrade a microbial cell wall containing chitin and peptidoglycan. There were no significant differences in secreted CAZymes between fungi growing on gymnosperms and angiosperms, suggesting that the secreted CAZymes in the Hymenochaetales evolved before differentiation of host trees into gymnosperms and angiosperms. Nevertheless, parasitic and saprophytic species of the Hymenochaetales are very similar in many genome features, which reflect their close phylogenetic relationships both being white rot fungi. Phylogenomic and molecular clock analyses showed that the EcM genus Coltricia formed a clade located at the base of the Hymenochaetaceae and divergence time later than saprophytic species. And Coltricia remains one to two genes of AA2 family. These indicate that the ancestors of Coltricia appear to have originated from saprophytic ancestor with the ability to cause a white rot. This study provides new genomic data for EcM species and insights into the ecological diversification within the Hymenochaetales based on comparative genomics and phylogenomics analyses. Oxford University Press 2023-07-27 /pmc/articles/PMC10410303/ /pubmed/37498334 http://dx.doi.org/10.1093/gbe/evad136 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Zhao, Heng Dai, Yu-Cheng Wu, Fang Liu, Xiao-Yong Maurice, Sundy Krutovsky, Konstantin V Pavlov, Igor N Lindner, Daniel L Martin, Francis M Yuan, Yuan Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia |
title | Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia |
title_full | Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia |
title_fullStr | Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia |
title_full_unstemmed | Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia |
title_short | Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia |
title_sort | insights into the ecological diversification of the hymenochaetales based on comparative genomics and phylogenomics with an emphasis on coltricia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410303/ https://www.ncbi.nlm.nih.gov/pubmed/37498334 http://dx.doi.org/10.1093/gbe/evad136 |
work_keys_str_mv | AT zhaoheng insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT daiyucheng insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT wufang insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT liuxiaoyong insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT mauricesundy insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT krutovskykonstantinv insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT pavlovigorn insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT lindnerdaniell insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT martinfrancism insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia AT yuanyuan insightsintotheecologicaldiversificationofthehymenochaetalesbasedoncomparativegenomicsandphylogenomicswithanemphasisoncoltricia |