Cargando…
The transformative power of transformers in protein structure prediction
Transformer neural networks have revolutionized structural biology with the ability to predict protein structures at unprecedented high accuracy. Here, we report the predictive modeling performance of the state-of-the-art protein structure prediction methods built on transformers for 69 protein targ...
Autores principales: | Moussad, Bernard, Roche, Rahmatullah, Bhattacharya, Debswapna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410766/ https://www.ncbi.nlm.nih.gov/pubmed/37523536 http://dx.doi.org/10.1073/pnas.2303499120 |
Ejemplares similares
-
E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction
por: Roche, Rahmatullah, et al.
Publicado: (2023) -
EquiPNAS: improved protein-nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks
por: Roche, Rahmatullah, et al.
Publicado: (2023) -
Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins
por: Roche, Rahmatullah, et al.
Publicado: (2021) -
Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading
por: Bhattacharya, Sutanu, et al.
Publicado: (2021) -
PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries
por: Shuvo, Md Hossain, et al.
Publicado: (2023)