Cargando…
Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications
Introduction: Drugs and biocompatible nanoparticles have raised significant potential in advancing the bone regeneration. Electrospinning technology enables the full realization of the value of drugs and nanoparticles. Methods: In this study, we have successfully fabricated core–sheath nanofibers so...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410860/ https://www.ncbi.nlm.nih.gov/pubmed/37564996 http://dx.doi.org/10.3389/fbioe.2023.1205252 |
_version_ | 1785086544278716416 |
---|---|
author | Qian, Chenghui Liu, Yubo Chen, Si Zhang, Chenyang Chen, Xiaohong Liu, Yuehua Liu, Ping |
author_facet | Qian, Chenghui Liu, Yubo Chen, Si Zhang, Chenyang Chen, Xiaohong Liu, Yuehua Liu, Ping |
author_sort | Qian, Chenghui |
collection | PubMed |
description | Introduction: Drugs and biocompatible nanoparticles have raised significant potential in advancing the bone regeneration. Electrospinning technology enables the full realization of the value of drugs and nanoparticles. Methods: In this study, we have successfully fabricated core–sheath nanofibers solely composed of polycaprolactone (PCL) polymer. Simvastatin (SIM) was confined to the core of the nanofibers while nanohydroxyapatite (nHA) was loaded on the nanofiber surface. Results: All the prepared nanofibers exhibited a cylindrical micromorphology, and the core–sheath structure was exploited using a Transmission Electron Microscope. X-ray pattern results indicated that SIM was in an amorphous state within nanofibers, while Fourier Transform InfraRed spectroscopy showed excellent chemical compatibility among SIM, nHA, and PCL. The actual loading of nHA within the nanofiber was determined by a thermogravimetric test due to the high melting point of nHA. Core–sheath nanofibers could release SIM for 672 h, which was attributed to the core–sheath structure. Furthermore, nanofibers loaded with SIM or nHA had a positive impact on cell proliferation, with the core–sheath nanofibers displaying the most favorable cell proliferation behavior. Discussion: Such a synergistic facilitation strategy based on materials and nanostructure may encourage researchers to exploit new biomedical materials in future. |
format | Online Article Text |
id | pubmed-10410860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104108602023-08-10 Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications Qian, Chenghui Liu, Yubo Chen, Si Zhang, Chenyang Chen, Xiaohong Liu, Yuehua Liu, Ping Front Bioeng Biotechnol Bioengineering and Biotechnology Introduction: Drugs and biocompatible nanoparticles have raised significant potential in advancing the bone regeneration. Electrospinning technology enables the full realization of the value of drugs and nanoparticles. Methods: In this study, we have successfully fabricated core–sheath nanofibers solely composed of polycaprolactone (PCL) polymer. Simvastatin (SIM) was confined to the core of the nanofibers while nanohydroxyapatite (nHA) was loaded on the nanofiber surface. Results: All the prepared nanofibers exhibited a cylindrical micromorphology, and the core–sheath structure was exploited using a Transmission Electron Microscope. X-ray pattern results indicated that SIM was in an amorphous state within nanofibers, while Fourier Transform InfraRed spectroscopy showed excellent chemical compatibility among SIM, nHA, and PCL. The actual loading of nHA within the nanofiber was determined by a thermogravimetric test due to the high melting point of nHA. Core–sheath nanofibers could release SIM for 672 h, which was attributed to the core–sheath structure. Furthermore, nanofibers loaded with SIM or nHA had a positive impact on cell proliferation, with the core–sheath nanofibers displaying the most favorable cell proliferation behavior. Discussion: Such a synergistic facilitation strategy based on materials and nanostructure may encourage researchers to exploit new biomedical materials in future. Frontiers Media S.A. 2023-07-26 /pmc/articles/PMC10410860/ /pubmed/37564996 http://dx.doi.org/10.3389/fbioe.2023.1205252 Text en Copyright © 2023 Qian, Liu, Chen, Zhang, Chen, Liu and Liu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Qian, Chenghui Liu, Yubo Chen, Si Zhang, Chenyang Chen, Xiaohong Liu, Yuehua Liu, Ping Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications |
title | Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications |
title_full | Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications |
title_fullStr | Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications |
title_full_unstemmed | Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications |
title_short | Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications |
title_sort | electrospun core–sheath pcl nanofibers loaded with nha and simvastatin and their potential bone regeneration applications |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410860/ https://www.ncbi.nlm.nih.gov/pubmed/37564996 http://dx.doi.org/10.3389/fbioe.2023.1205252 |
work_keys_str_mv | AT qianchenghui electrospuncoresheathpclnanofibersloadedwithnhaandsimvastatinandtheirpotentialboneregenerationapplications AT liuyubo electrospuncoresheathpclnanofibersloadedwithnhaandsimvastatinandtheirpotentialboneregenerationapplications AT chensi electrospuncoresheathpclnanofibersloadedwithnhaandsimvastatinandtheirpotentialboneregenerationapplications AT zhangchenyang electrospuncoresheathpclnanofibersloadedwithnhaandsimvastatinandtheirpotentialboneregenerationapplications AT chenxiaohong electrospuncoresheathpclnanofibersloadedwithnhaandsimvastatinandtheirpotentialboneregenerationapplications AT liuyuehua electrospuncoresheathpclnanofibersloadedwithnhaandsimvastatinandtheirpotentialboneregenerationapplications AT liuping electrospuncoresheathpclnanofibersloadedwithnhaandsimvastatinandtheirpotentialboneregenerationapplications |