Cargando…
PRMT5 reduces immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and inhibiting ferroptosis
BACKGROUND: As an emerging treatment strategy for triple-negative breast cancer (TNBC), immunotherapy acts in part by inducing ferroptosis. Recent studies have shown that protein arginine methyltransferase 5 (PRMT5) has distinct roles in immunotherapy among multiple cancers by modulating the tumor m...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410861/ https://www.ncbi.nlm.nih.gov/pubmed/37380368 http://dx.doi.org/10.1136/jitc-2023-006890 |
Sumario: | BACKGROUND: As an emerging treatment strategy for triple-negative breast cancer (TNBC), immunotherapy acts in part by inducing ferroptosis. Recent studies have shown that protein arginine methyltransferase 5 (PRMT5) has distinct roles in immunotherapy among multiple cancers by modulating the tumor microenvironment. However, the role of PRMT5 during ferroptosis, especially for TNBC immunotherapy, is unclear. METHODS: PRMT5 expression in TNBC was measured by IHC (immunohistochemistry) staining. To explore the function of PRMT5 in ferroptosis inducers and immunotherapy, functional experiments were conducted. A panel of biochemical assays was used to discover potential mechanisms. RESULTS: PRMT5 promoted ferroptosis resistance in TNBC but impaired ferroptosis resistance in non-TNBC. Mechanistically, PRMT5 selectively methylated KEAP1 and thereby downregulated NRF2 and its downstream targets which can be divided into two groups: pro-ferroptosis and anti-ferroptosis. We found that the cellular ferrous level might be a critical factor in determining cell fate as NRF2 changes. In the context of higher ferrous concentrations in TNBC cells, PRMT5 inhibited the NRF2/HMOX1 pathway and slowed the import of ferrous. In addition, a high PRMT5 protein level indicated strong resistance of TNBC to immunotherapy, and PRMT5 inhibitors potentiated the therapeutic efficacy of immunotherapy. CONCLUSIONS: Our results reveal that the activation of PRMT5 can modulate iron metabolism and drive resistance to ferroptosis inducers and immunotherapy. Accordingly, PRMT5 can be used as a target to change the immune resistance of TNBC. |
---|