Cargando…
A review on deep learning applications in highly multiplexed tissue imaging data analysis
Since its introduction into the field of oncology, deep learning (DL) has impacted clinical discoveries and biomarker predictions. DL-driven discoveries and predictions in oncology are based on a variety of biological data such as genomics, proteomics, and imaging data. DL-based computational framew...
Autores principales: | Zidane, Mohammed, Makky, Ahmad, Bruhns, Matthias, Rochwarger, Alexander, Babaei, Sepideh, Claassen, Manfred, Schürch, Christian M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410935/ https://www.ncbi.nlm.nih.gov/pubmed/37564726 http://dx.doi.org/10.3389/fbinf.2023.1159381 |
Ejemplares similares
-
Corrigendum: A review on deep learning applications in highly multiplexed tissue imaging data analysis
por: Zidane, Mohammed, et al.
Publicado: (2023) -
S(3)-CIMA: Supervised spatial single-cell image analysis for identifying disease-associated cell-type compositions in tissue
por: Babaei, Sepideh, et al.
Publicado: (2023) -
High-multiplex tissue imaging in routine pathology—are we there yet?
por: Einhaus, Jakob, et al.
Publicado: (2023) -
3D multiplexed tissue imaging reconstruction and optimized region of interest (ROI) selection through deep learning model of channels embedding
por: Burlingame, Erik, et al.
Publicado: (2023) -
3D Structure From 2D Microscopy Images Using Deep Learning
por: Blundell, Benjamin, et al.
Publicado: (2021)