Cargando…
SMAD2 inhibits pyroptosis of fibroblast-like synoviocytes and secretion of inflammatory factors via the TGF-β pathway in rheumatoid arthritis
OBJECTIVE: Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease. Over-activation of fibroblast-like synoviocytes is responsible for the hyperplasia of synovium and destruction of cartilage and bone and pyroptosis of FLS plays a key role in those pathological processes during RA. Th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410963/ https://www.ncbi.nlm.nih.gov/pubmed/37559090 http://dx.doi.org/10.1186/s13075-023-03136-1 |
Sumario: | OBJECTIVE: Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease. Over-activation of fibroblast-like synoviocytes is responsible for the hyperplasia of synovium and destruction of cartilage and bone and pyroptosis of FLS plays a key role in those pathological processes during RA. This study investigated the detailed mechanisms that SMAD2 regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis. METHODS: We collected synovial tissues of RA patients and FLS-RA and cultured FLS for detection of expression of SMAD2. ASC, NLRP3, cleaved-caspase-1, and GSDMD-N were detected by Western blot after overexpression of SMAD2. Besides, flow cytometry, electron microscope, ELISA, HE staining, and Safranin O staining were performed to further demonstrate that SMAD2 can affect the pyroptosis of FLS-RA. RESULTS: The expression of SMAD2 was down-regulated in synovial tissues of RA patients and FLS-RA. Overexpression of SMAD2 can inhibit the expression of ASC, NLRP3, cleaved-caspase-1, and GSDMD-N. Flow cytometry and electron microscope further demonstrated that SMAD2 attenuated pyroptosis of FLS-RA. In addition, overexpression of SMAD2 also inhibited inflammatory factors such as IL-1β, IL-18, IL-6, and IL-8 secretion and release of LDH. Besides, overexpression of SMAD2 can reverse the decrease of p-SMAD2 and TGF-TGF-β induced by nigericin. In vivo experiments on CIA rats further demonstrated that overexpression of SMAD2 by local intra-articular injection of LV-SMAD2 can effectively alleviate joint redness, swelling, and destruction of cartilage and bones. CONCLUSION: SMAD2 inhibited FLS-RA pyroptosis by down-regulating of NLRP3 inflammasomes (NLRP3, ASC, and caspase-1 complex) and eased the secretion of inflammatory factors via the TGF-β signaling pathway, thereby improving the symptom of RA. We hope that this study may provide a new research idea for RA and a potential target for the treatment of RA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-023-03136-1. |
---|