Cargando…

Pollen viabilities and gene expression profiles across Musa genomes

Banana (Musa spp.) is a major global economic fruit crop. However, cross-pollination from other Musa cultivars grown in nearby plantations results in seeded fruit that exceeds market demand. This study investigated pollen viability and germination and examined the expression profiles of pollen devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Mingmanit, Yonlada, Boonsrangsom, Thanita, Sujipuli, Kawee, Ratanasut, Kumrop, Inthima, Phithak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411045/
https://www.ncbi.nlm.nih.gov/pubmed/37564880
http://dx.doi.org/10.1093/aobpla/plad052
Descripción
Sumario:Banana (Musa spp.) is a major global economic fruit crop. However, cross-pollination from other Musa cultivars grown in nearby plantations results in seeded fruit that exceeds market demand. This study investigated pollen viability and germination and examined the expression profiles of pollen development-related genes across seven Musa genomes (AA, BB, AAA, BBB, AAB, ABB and ABBB). Twenty-three Musa cultivars were assessed for pollen viability using lacto-aceto-orcein and triphenyltetrazolium chloride staining methods. Results revealed that pollen viability obtained from both methods was significantly different among all the studied cultivars. Cultivars carrying BB (diploid) genomes had higher viability percentages than AA (diploid), AAA, BBB, AAB and ABB (triploid) and ABBB (tetraploid) genomes. Germination of the studied cultivars was also investigated on pollen culture medium, with results showing significant differences between the pollen of each cultivar. The best germinating cultivar was TKM (11.0 %), carrying BB genome. Expression profiles of pollen development-related genes by RT–qPCR indicated that both TPD1A and MYB80 genes were highly expressed in triploid Musa genomes but the PTC1 gene showed down-regulated expression, resulting in non-viable pollen. Pollen viability, pollen germination and pollen development-related genes differed across Musa cultivars. This knowledge will be useful for the selection of male parents for Musa cross-breeding programs. Pollen viability should also be considered when planning Musa production to avoid seeded fruit.