Cargando…
Targeting metabolism in aortic aneurysm and dissection: from basic research to clinical applications
Aortic aneurysm and dissection (AAD) are a group of insidious and lethal cardiovascular diseases that characterized by seriously threatening the life and health of people, but lack effective nonsurgical interventions. Alterations in metabolites are increasingly recognized as universal features of AA...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411465/ https://www.ncbi.nlm.nih.gov/pubmed/37564200 http://dx.doi.org/10.7150/ijbs.85467 |
Sumario: | Aortic aneurysm and dissection (AAD) are a group of insidious and lethal cardiovascular diseases that characterized by seriously threatening the life and health of people, but lack effective nonsurgical interventions. Alterations in metabolites are increasingly recognized as universal features of AAD because metabolic abnormalities have been identified not only in arterial tissue but also in blood and vascular cells from both patients and animal models with this disease. Over the past few decades, studies have further supported this notion by linking AAD to various types of metabolites such as those derived from gut microbiota or involved in TCA cycle or lipid metabolism. Many of these altered metabolites may contribute to the pathogenesis of AAD. This review aims to illustrate the close association between body metabolism and the occurrence and development of AAD, as well as summarize the significance of metabolites correlated with the pathological process of AAD. This provides valuable insight for developing new therapeutic agents for AAD. Therefore, we present a brief overview of metabolism in AAD biology, including signaling pathways involved in these processes and current clinical studies targeting AAD metabolisms. It is necessary to understand the metabolic mechanisms underlying AAD to provides significant knowledge for AAD diagnosis and new therapeutics for treatment. |
---|