Cargando…
Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage
[Image: see text] In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core–sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, rep...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411507/ https://www.ncbi.nlm.nih.gov/pubmed/37564956 http://dx.doi.org/10.1021/acssuschemeng.3c02094 |
_version_ | 1785086680713134080 |
---|---|
author | Patel, Dev Wei, Wanying Singh, Harmann Xu, Kai Beck, Christopher Wildy, Michael Schossig, John Hu, Xiao Hyun, Dong Choon Chen, Wenshuai Lu, Ping |
author_facet | Patel, Dev Wei, Wanying Singh, Harmann Xu, Kai Beck, Christopher Wildy, Michael Schossig, John Hu, Xiao Hyun, Dong Choon Chen, Wenshuai Lu, Ping |
author_sort | Patel, Dev |
collection | PubMed |
description | [Image: see text] In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core–sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, representing 75.8% of the heat storage capacity of pristine LA (180.2 J/g), a value surpassing all previously reported core–sheath fibers. Scanning electron microscopy revealed uniform LAPS nanofibers free of surface LA until the core LA feed rate reached 1.3 mL/h. As the core LA feed rate increased, the fiber diameter shrank from 2.24 ± 0.31 to 0.58 ± 0.45 μm. Infrared spectra demonstrated a proportional increase in the LA content with rising core LA injection rates. Thermogravimetric analysis found the maximum core LA content in core–sheath nanofibers to be 75.0%. Differential scanning calorimetry thermograms displayed a trend line shift upon LA leakage for LA(1.3)PS nanofibers. LAPS fibers containing 75.0% LA effectively maintained consistent cycling stability and reusability across 100 heating–cooling cycles (20–60 °C) without heat storage deterioration. The core LA remained securely within the PS sheath after 100 cycles, and the LAPS nanofibers retained an excellent structural integrity without rupture. The energy-dense and form-stable LAPS core–sheath nanofibers have great potential for various thermal energy storage applications, such as building insulation, smart textiles, and electronic cooling systems, providing efficient temperature regulation and energy conservation. |
format | Online Article Text |
id | pubmed-10411507 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-104115072023-08-10 Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage Patel, Dev Wei, Wanying Singh, Harmann Xu, Kai Beck, Christopher Wildy, Michael Schossig, John Hu, Xiao Hyun, Dong Choon Chen, Wenshuai Lu, Ping ACS Sustain Chem Eng [Image: see text] In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core–sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, representing 75.8% of the heat storage capacity of pristine LA (180.2 J/g), a value surpassing all previously reported core–sheath fibers. Scanning electron microscopy revealed uniform LAPS nanofibers free of surface LA until the core LA feed rate reached 1.3 mL/h. As the core LA feed rate increased, the fiber diameter shrank from 2.24 ± 0.31 to 0.58 ± 0.45 μm. Infrared spectra demonstrated a proportional increase in the LA content with rising core LA injection rates. Thermogravimetric analysis found the maximum core LA content in core–sheath nanofibers to be 75.0%. Differential scanning calorimetry thermograms displayed a trend line shift upon LA leakage for LA(1.3)PS nanofibers. LAPS fibers containing 75.0% LA effectively maintained consistent cycling stability and reusability across 100 heating–cooling cycles (20–60 °C) without heat storage deterioration. The core LA remained securely within the PS sheath after 100 cycles, and the LAPS nanofibers retained an excellent structural integrity without rupture. The energy-dense and form-stable LAPS core–sheath nanofibers have great potential for various thermal energy storage applications, such as building insulation, smart textiles, and electronic cooling systems, providing efficient temperature regulation and energy conservation. American Chemical Society 2023-07-27 /pmc/articles/PMC10411507/ /pubmed/37564956 http://dx.doi.org/10.1021/acssuschemeng.3c02094 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Patel, Dev Wei, Wanying Singh, Harmann Xu, Kai Beck, Christopher Wildy, Michael Schossig, John Hu, Xiao Hyun, Dong Choon Chen, Wenshuai Lu, Ping Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage |
title | Efficient
and Secure Encapsulation of a Natural Phase
Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable
Thermal Energy Storage |
title_full | Efficient
and Secure Encapsulation of a Natural Phase
Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable
Thermal Energy Storage |
title_fullStr | Efficient
and Secure Encapsulation of a Natural Phase
Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable
Thermal Energy Storage |
title_full_unstemmed | Efficient
and Secure Encapsulation of a Natural Phase
Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable
Thermal Energy Storage |
title_short | Efficient
and Secure Encapsulation of a Natural Phase
Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable
Thermal Energy Storage |
title_sort | efficient
and secure encapsulation of a natural phase
change material in nanofibers using coaxial electrospinning for sustainable
thermal energy storage |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411507/ https://www.ncbi.nlm.nih.gov/pubmed/37564956 http://dx.doi.org/10.1021/acssuschemeng.3c02094 |
work_keys_str_mv | AT pateldev efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT weiwanying efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT singhharmann efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT xukai efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT beckchristopher efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT wildymichael efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT schossigjohn efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT huxiao efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT hyundongchoon efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT chenwenshuai efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage AT luping efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage |