Cargando…

Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage

[Image: see text] In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core–sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, rep...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Dev, Wei, Wanying, Singh, Harmann, Xu, Kai, Beck, Christopher, Wildy, Michael, Schossig, John, Hu, Xiao, Hyun, Dong Choon, Chen, Wenshuai, Lu, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411507/
https://www.ncbi.nlm.nih.gov/pubmed/37564956
http://dx.doi.org/10.1021/acssuschemeng.3c02094
_version_ 1785086680713134080
author Patel, Dev
Wei, Wanying
Singh, Harmann
Xu, Kai
Beck, Christopher
Wildy, Michael
Schossig, John
Hu, Xiao
Hyun, Dong Choon
Chen, Wenshuai
Lu, Ping
author_facet Patel, Dev
Wei, Wanying
Singh, Harmann
Xu, Kai
Beck, Christopher
Wildy, Michael
Schossig, John
Hu, Xiao
Hyun, Dong Choon
Chen, Wenshuai
Lu, Ping
author_sort Patel, Dev
collection PubMed
description [Image: see text] In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core–sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, representing 75.8% of the heat storage capacity of pristine LA (180.2 J/g), a value surpassing all previously reported core–sheath fibers. Scanning electron microscopy revealed uniform LAPS nanofibers free of surface LA until the core LA feed rate reached 1.3 mL/h. As the core LA feed rate increased, the fiber diameter shrank from 2.24 ± 0.31 to 0.58 ± 0.45 μm. Infrared spectra demonstrated a proportional increase in the LA content with rising core LA injection rates. Thermogravimetric analysis found the maximum core LA content in core–sheath nanofibers to be 75.0%. Differential scanning calorimetry thermograms displayed a trend line shift upon LA leakage for LA(1.3)PS nanofibers. LAPS fibers containing 75.0% LA effectively maintained consistent cycling stability and reusability across 100 heating–cooling cycles (20–60 °C) without heat storage deterioration. The core LA remained securely within the PS sheath after 100 cycles, and the LAPS nanofibers retained an excellent structural integrity without rupture. The energy-dense and form-stable LAPS core–sheath nanofibers have great potential for various thermal energy storage applications, such as building insulation, smart textiles, and electronic cooling systems, providing efficient temperature regulation and energy conservation.
format Online
Article
Text
id pubmed-10411507
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104115072023-08-10 Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage Patel, Dev Wei, Wanying Singh, Harmann Xu, Kai Beck, Christopher Wildy, Michael Schossig, John Hu, Xiao Hyun, Dong Choon Chen, Wenshuai Lu, Ping ACS Sustain Chem Eng [Image: see text] In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core–sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, representing 75.8% of the heat storage capacity of pristine LA (180.2 J/g), a value surpassing all previously reported core–sheath fibers. Scanning electron microscopy revealed uniform LAPS nanofibers free of surface LA until the core LA feed rate reached 1.3 mL/h. As the core LA feed rate increased, the fiber diameter shrank from 2.24 ± 0.31 to 0.58 ± 0.45 μm. Infrared spectra demonstrated a proportional increase in the LA content with rising core LA injection rates. Thermogravimetric analysis found the maximum core LA content in core–sheath nanofibers to be 75.0%. Differential scanning calorimetry thermograms displayed a trend line shift upon LA leakage for LA(1.3)PS nanofibers. LAPS fibers containing 75.0% LA effectively maintained consistent cycling stability and reusability across 100 heating–cooling cycles (20–60 °C) without heat storage deterioration. The core LA remained securely within the PS sheath after 100 cycles, and the LAPS nanofibers retained an excellent structural integrity without rupture. The energy-dense and form-stable LAPS core–sheath nanofibers have great potential for various thermal energy storage applications, such as building insulation, smart textiles, and electronic cooling systems, providing efficient temperature regulation and energy conservation. American Chemical Society 2023-07-27 /pmc/articles/PMC10411507/ /pubmed/37564956 http://dx.doi.org/10.1021/acssuschemeng.3c02094 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Patel, Dev
Wei, Wanying
Singh, Harmann
Xu, Kai
Beck, Christopher
Wildy, Michael
Schossig, John
Hu, Xiao
Hyun, Dong Choon
Chen, Wenshuai
Lu, Ping
Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage
title Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage
title_full Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage
title_fullStr Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage
title_full_unstemmed Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage
title_short Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage
title_sort efficient and secure encapsulation of a natural phase change material in nanofibers using coaxial electrospinning for sustainable thermal energy storage
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411507/
https://www.ncbi.nlm.nih.gov/pubmed/37564956
http://dx.doi.org/10.1021/acssuschemeng.3c02094
work_keys_str_mv AT pateldev efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT weiwanying efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT singhharmann efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT xukai efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT beckchristopher efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT wildymichael efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT schossigjohn efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT huxiao efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT hyundongchoon efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT chenwenshuai efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage
AT luping efficientandsecureencapsulationofanaturalphasechangematerialinnanofibersusingcoaxialelectrospinningforsustainablethermalenergystorage